Температура самовоспламенения дизельного топлива

Факторы

В процессе сгорания дизеля основную роль играют следующие факторы:

  • Индуцированный заряд воздуха, его температура и его кинетическая энергия в нескольких измерениях.
  • Распыляемость впрыскиваемого топлива, проникновение брызг, температура и химические характеристики.

Хотя эти два фактора являются наиболее важными, существуют другие параметры, которые могут существенно повлиять на работу двигателя. Они играют вторичную, но важную роль в процессе сгорания. Например:

Конструкция впускного канала. Она оказывает сильное влияние на движение наддувочного воздуха (особенно в тот момент, когда он входит в цилиндр) и на скорость перемешивания в камере сгорания. От этого может меняться температура горения дизельного топлива в котле.
Конструкция впускного отверстия также может влиять на температуру наддувочного воздуха. Это может быть достигнуто путем передачи тепла от водяной рубашки через площадь поверхности впускного отверстия.
Размер впускного клапана. Контролирует общую массу воздуха, впускаемого в цилиндр за конечное время.
Степень сжатия. Она влияет на испарение, скорость перемешивания и качество сгорания, независимо от температуры горения дизельного топлива в котле.
Давление впрыска. Оно контролирует продолжительность впрыска для заданного параметра отверстия сопла.
Геометрия распыления, которая непосредственно влияет на качество и температуру горения дизельного топлива и бензина за счет использования воздуха. Например, больший угол конуса разбрызгивания может поместить горючее сверху поршня и снаружи бака сгорания в дизельных двигателях DI с открытой камерой. Это условие может привести к чрезмерному «курению», так как горючее лишается доступа к воздуху. Широкие углы конуса могут также привести к разбрызгиванию топлива на стенках цилиндра, а не внутри камеры сгорания, где это требуется. Распыленное на стенку цилиндра, оно в конечном итоге будет перемещено вниз в масляный поддон, что сократит срок службы смазочного масла. Поскольку угол разбрызгивания является одной из переменных, влияющих на скорость перемешивания воздуха в топливной струе вблизи выходного отверстия инжектора, он может оказать существенное влияние на общий процесс сгорания.
Конфигурация клапана, которая контролирует положение инжектора. Двухклапанные системы создают наклонное положение инжектора, что подразумевает неравномерное распыление. Это приводит к нарушению смешивания топлива и воздуха. С другой стороны, конструкции с четырьмя клапанами допускают вертикальную установку инжектора, симметричное расположение распыления топлива и равный доступ к доступному воздуху для каждого из распылителей.
Положение верхнего поршневого кольца. Оно контролирует мертвое пространство между верхней площадкой поршня и гильзой цилиндра. Это мертвое пространство задерживает воздух, который сжимается и расширяется, даже не участвуя в процессе сгорания

Поэтому важно понимать, что система работы дизельного двигателя не ограничивается камерой сгорания, распылителями форсунок и их непосредственным окружением. Сгорание включает в себя любую часть или компонент, которые могут повлиять на конечный результат процесса

Потому ни у кого не должно быть сомнений по поводу того, горит ли дизельное топливо.

Температура — самовоспламенение

Температура самовоспламенения определяется специальными приборами и составляет для горючих жидкостей 400 — 700 С.

Температура самовоспламенения — минимальная темпера тура, при которой горючее вещество загорается без внешних источников зажигания при соприкосновении с кислородом воздуха.

Температура самовоспламенения характеризует возможность начала пламенного горения вещества при контакте его с кислородом воздуха. Температура самовоспламенения горючей системы обычно относится к горючему веществу, входящему в нее. Она не является постоянной для одного и того же горючего вещества и изменяется в зависимости от его концентрации, давления, размеров, формы и материала сосудов и от других факторов. С увеличением объема и повышением давления смеси температура самовоспламенения снижается. Так, например, у бензина температура самовоспламенения составляет 480 С при абсолютном давлении 0 1 МН / м2 ( 1 кгс / см2) и 310 С при 1 МН / м2 ( 10 кгс / см2), а у керосина соответственно 460 и 250 С.

Температура самовоспламенения — наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение вещества.

Температура самовоспламенения характеризует способность нефтепродуктов к самовозгоранию в присутствии кислорода воздуха, но без воздействия открытого огня. При атмосферном давлении она составляет для дизельного топлива 300 — 330 С, для керосина 290 — 430 С, для бензина 510 — 530 С.

Температура самовоспламенения — самая низкая температура вещества, при которой в условиях специальных испытаний происходит резкое увеличение скорости экзотермических реакций, заканчивающихся пламенным горением.

Температура самовоспламенения — наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение вещества.

Температура самовоспламенения не имеет точного значения. Она зависит от содержания горючего газа в газовоздушной смеси, степени однородности смеси, формы и размеров сосуда, в котором происходит нагревание смеси, каталитического влияния стенок сосуда, быстроты и способа нагрева смеси и давления, под которым находится смесь.

Температура самовоспламенения — это та температура, до которой нужно нагреть вещество, чтобы оно загорелось.

Температура самовоспламенения — Это наименьшая температура паров или газов, до которой их нужно нагреть, чтобы они воспламенились при наличии окислителя без внесения в них открытого источника зажигания.

Температура самовоспламенения играет существенную роль в оценке качества дизельных тонлнв.

Температура самовоспламенения понижается при увеличении концентрации кислорода в воздухе и повышении давления в цилиндре двигателя. Но даже в этих условиях высокоароматизированные топлива могут не воспламеняться.

Температура самовоспламенения для данной горючей смеси зависит от объема и формы сосуда, в котором она находится. Чем больше объем горючей смеси, тем меньше поверхность теплоотдачи, приходящаяся на единицу ее объема. Если теплоотдача мала, то самовоспламенение возникает уже при небольшой температуре. Наоборот, при очень малом объеме горючей смеси поверхность теплоотдачи, приходящаяся на единицу объема, становится такой большой, что теплоотдача во много раз превышает теплообразование и самовоспламенения не произойдет или оно возникнет при очень высокой температуре.

Температура самовоспламенения — самая низкая температура смеси паров жидкости с воздухом, при нагреве до которой происходит резкое увеличение скорости экзотермических реакций, приводящее к возникновению пламенного горения.

Температура самовоспламенения продуктов в воздухе.

Факторы

В процессе сгорания дизеля основную роль играют следующие факторы:

  • Индуцированный заряд воздуха, его температура и его кинетическая энергия в нескольких измерениях.
  • Распыляемость впрыскиваемого топлива, проникновение брызг, температура и химические характеристики.

Хотя эти два фактора являются наиболее важными, существуют другие параметры, которые могут существенно повлиять на работу двигателя. Они играют вторичную, но важную роль в процессе сгорания. Например:

Конструкция впускного канала. Она оказывает сильное влияние на движение наддувочного воздуха (особенно в тот момент, когда он входит в цилиндр) и на скорость перемешивания в камере сгорания. От этого может меняться температура горения дизельного топлива в котле. Конструкция впускного отверстия также может влиять на температуру наддувочного воздуха. Это может быть достигнуто путем передачи тепла от водяной рубашки через площадь поверхности впускного отверстия. Размер впускного клапана. Контролирует общую массу воздуха, впускаемого в цилиндр за конечное время. Степень сжатия. Она влияет на испарение, скорость перемешивания и качество сгорания, независимо от температуры горения дизельного топлива в котле. Давление впрыска. Оно контролирует продолжительность впрыска для заданного параметра отверстия сопла. Геометрия распыления, которая непосредственно влияет на качество и температуру горения дизельного топлива и бензина за счет использования воздуха. Например, больший угол конуса разбрызгивания может поместить горючее сверху поршня и снаружи бака сгорания в дизельных двигателях DI с открытой камерой. Это условие может привести к чрезмерному «курению», так как горючее лишается доступа к воздуху. Широкие углы конуса могут также привести к разбрызгиванию топлива на стенках цилиндра, а не внутри камеры сгорания, где это требуется. Распыленное на стенку цилиндра, оно в конечном итоге будет перемещено вниз в масляный поддон, что сократит срок службы смазочного масла. Поскольку угол разбрызгивания является одной из переменных, влияющих на скорость перемешивания воздуха в топливной струе вблизи выходного отверстия инжектора, он может оказать существенное влияние на общий процесс сгорания. Конфигурация клапана, которая контролирует положение инжектора. Двухклапанные системы создают наклонное положение инжектора, что подразумевает неравномерное распыление. Это приводит к нарушению смешивания топлива и воздуха. С другой стороны, конструкции с четырьмя клапанами допускают вертикальную установку инжектора, симметричное расположение распыления топлива и равный доступ к доступному воздуху для каждого из распылителей. Положение верхнего поршневого кольца. Оно контролирует мертвое пространство между верхней площадкой поршня и гильзой цилиндра. Это мертвое пространство задерживает воздух, который сжимается и расширяется, даже не участвуя в процессе сгорания

Поэтому важно понимать, что система работы дизельного двигателя не ограничивается камерой сгорания, распылителями форсунок и их непосредственным окружением. Сгорание включает в себя любую часть или компонент, которые могут повлиять на конечный результат процесса

Потому ни у кого не должно быть сомнений по поводу того, горит ли дизельное топливо.

Виды горючего

Оно бывает разным. Но нефтепродукты и другое топливо легко поддаются воспламенению.

Классификация следующая:

В каком агрегатном состоянии находиться                        Происхождение горючих материалов
Естественные                   Искусственные
Жидком Нефть. Бензин, дизельное топливо, смолы, керосин.
Газообразном Природный и промышленный. Генераторный, светильный, водяной.
Твердом Уголь, сланцы, дрова и торфяные породы. Кокс, пылевидное и в брикетах топливо.

Температура возгорания керосина и других продуктов отличается. Измерять ее достаточно сложно. Также разняться правила тушения. Твердыми материалами естественно пользуются для нагрева помещений люди, имеющие котел.

Бензин

Топливо наиболее популярно, особенно среди владельцев легковых машин. Оно состоит из смеси углеводородов, азота, серы, кислорода. Есть разные марки бензина. В каждой из них перечисленных компонентов больше либо менее. Из-за этого эксплуатационные качества отличаются.

Температура испарения

Термином называют тепловой порог, пройдя который, бензин самопроизвольно смешивается с воздухом. Ее нельзя определить, используя одну цифру.


Эта величина зависит от таких факторов:

  • давления насыщенных паров;
  • фракционного состава;
  • вязкости поверхности натяжения;
  • плотности;
  • теплоемкости.

Температура испарения бензина разного состава не слишком отличается между собой. Это происходит при 30°С, а если фракции тяжелые – 205°С. Когда на улице холодно, бензину, чтобы попасть в камеру сгорания и запустить двигатель, понадобиться затратить больше энергии.

Температура кипения

Молодые автолюбители не знают, что в жару при закипании топлива в карбюраторе машина могла стать обездвиженной. В системе горючее делались пробки из-за перегрева легких фракций. Они отсоединялись от тяжелых, став газовыми пузырями. Транспортному средству нужно было остыть, а потом продолжать поездку.

Температура вспышки

Собственная формула у нефтепродукта отсутствует. В него входит множество компонентов. Бензин способен воспламеняться при -40 °C, если произойдет возникновение открытого огня.

Температура горения

Октановое число на нее не влияет. От него зависит только устойчивость к детонации. У популярных марок бензина характеристики практически одинаковы. В двигателе температура 900-1100 °C, может быть и ниже. На это влияет давление цилиндров. Что касается открытого огня, то для бензина это – 800-900 °C.

Главные качества

Главные качества топлива – его химический состав, способность к испарению, горению, самовоспламенению, возникновению отложений, а также коррозионная устойчивость и стойкость к возгоранию.

Физико-химические характеристики зависят от того, какие углеводороды и в каких соотношениях присутствуют в топливе. Температура замерзания топлива составляет -60 градусов, в случае использования особых присадок можно снизить этот показатель до -71 градуса.

Состав фракции топлива воздействует на эксплуатационные качества. При изготовлении крайне необходимо получить оптимальное соотношение легких и тяжелых соединений, чтобы получить достаточно высокое испарение при низких температурах и не допустить сбоев в работе мотора из-за создания паровых пробок в топливном проводе, которые могут появиться ввиду активного испарения большого числа легких соединений.

Ввиду этого бензины, которые используются в местностях с жарким климатом и в районах полярного круга, обладают разным химическим составом для того, чтобы обеспечить нужные эксплуатационные качества. Бензин получается несколькими способами:

  • путем прямой перегонки нефти;
  • путем отбора конкретных фракций;
  • крекинг;
  • риформинг.

Главная составляющая топлива, которая получена способом прямого перегона – соединения алканов. При крекинге и риформинге они трансформируются в разветвленные алканы и ароматические компоненты. Два последних метода позволяют получить горючее с высоким октановым числом марок АИ 92 и 95.

Преимущества и недостатки

С 70-х годов прошлого столетия использование дизельных двигателей в более крупных дорожных и внедорожных транспортных средствах в США возросло. Согласно данным Британского общества производителей и производителей автомобилей, средний показатель по ЕС для дизельных авто составляет 50 % от общего объема продаж (среди них 70 % — во Франции и 38 % — в Великобритании).

В холодную погоду запуск высокоскоростных дизельных двигателей может быть затруднен, поскольку масса блока и головки цилиндров поглощает тепло сжатия, предотвращая воспламенение из-за более высокого отношения поверхности к объему. Предварительно такие агрегаты используют небольшие электрические нагреватели внутри камер, называемых свечами накаливания.

Многие двигатели используют резистивные нагреватели во впускном коллекторе для нагрева входящего воздуха и для запуска или до тех пор, пока не будет достигнута рабочая температура. Электрические резистивные нагреватели блока двигателя, подключенные к электросети, используются в холодных климатических условиях. В таких случаях его требуется включать на длительное время (более часа), чтобы уменьшить время запуска и износ.

Блочные нагреватели также применяются для аварийных источников питания с дизельными генераторами, которые должны быстро снимать нагрузку при сбое в работе. В прошлом использовалось более широкое разнообразие методов холодного запуска. Некоторые двигатели, например Detroit Diesel, использовали систему для введения небольших количеств эфира во впускной коллектор, чтобы начать сгорание. Другие использовали смешанную систему с резистивным нагревателем, сжигающим метанол. Импровизированный метод, особенно на неработающих двигателях, состоит в том, чтобы вручную распылять аэрозольный баллончик с эфирной жидкостью в поток всасываемого воздуха (обычно через узел фильтра всасываемого воздуха).

Факторы влияющие на развитие третьей фазы

  1. Качество распыления и количество топлива, впрыскиваемого после начала сгорания. Чем меньше подано топлива до начала третьей фазы горения, тем меньше будет выделено теплоты в этой фазе, что характерно для работы дизеля на малых нагрузках.
  2. Скорость движения воздушного заряда. Рост скорости движения заряда увеличивает тепловыделение, но это происходит до определенного момента. При чрезмерном завихрении заряда тепловыделение в третьей фазе снижается, так как в этом случае продукты сгорания из зоны одного факела попадают в зону другого, увеличивая неполноту сгорания.
  3. Частота вращения коленчатого вала С ростом частоты вращения коленчатого вала скорость движения заряда увеличивается, а распыление улучшается. Продолжительность третьей фазы сокращается.

Четвертая фаза горения (04) — догорание начинается в момент достижения максимальной температуры и продолжается в течение всего времени догорания топлива. В течение этой фазы догорает топливо, не успевшее сгореть в третьей фазе, причем происходит это в условиях недостатка кислорода, так как значительное его количество уже израсходовано. Поэтому догорание протекает медленно.

За время четвертой фазы при полной нагрузке дизеля выделяется 15—25 % теплоты. Таким образом, общее количество тепловыделения к концу четвертой фазы оставляет 90—95 %. Остальные 5—10 % теряются вследствие неполноты сгорания топлива. Продолжительность четвертой фазы 3,5—5 мс. что соответствует 50—60° поворота коленчатого вала.

Дизельный двигатель отличается от бензинового тем, что топливо поджигается не от искры — оно самовоспламеняется при повышении давления и происходящем от этого разогреве.

Известно, что температура воспламенения дизельного топлива составляет от 70 до 120 ºС. Температура самовоспламенения колеблется в диапазоне от 300 до 330 ºС. В цилиндрах дизеля за счёт сжатия воздуха до давлений порядка 30 бар он разогревается именно до этих температур. Впрыскиваемое в этот момент топливо самовоспламеняется и горит, резко увеличивая давление в камере. Температура горения дизельного топлива составляет примерно 1100 ºС.

Возросшее в цилиндре дизельного двигателя давление толкает поршень вниз, за счёт его перемещения совершается полезная работа, вращающая колёса.

Общие характеристики дизельного топлива

Для всех видов дизельного топлива характерны следующие свойства:

  • Плотность и вязкость, обуславливающие фактор формирования и испарения смесей в двигателе.
  • Цетановое число. Детонационная устойчивость двигателя, его шумность и мощность зависят от данной характеристики дизельного топлива. Чем больше цетановое число, тем лучше сгорает горючее за счет короткого периода воспламенения и тем экологичнее выхлоп. По ГОСТу для дизельного топлива данный параметр должен находиться в пределах 40–60 единиц.
  • Низкотемпературные параметры. К их числу относят температуру замерзания дизельного топлива, его помутнения и фильтрации.

К дополнительным характеристикам относят химическую стабильность, зольность, йодистое число, кинематическую вязкость, массовую долю серы и серных соединений, коксуемость, кислотность, содержание воды и концентрацию смол. Несмотря на то, что они не особенно важны, производители их учитывают, поскольку того требует ГОСТ для дизельного топлива.

Связь плотности горючего и экономичности дизеля

Плотность горючего и экономичность дизеля напрямую зависит от температуры воздуха.

Поскольку процесс сгорания дизельного топлива, обладающего большим удельным весом, проходит с выделением огромного количества энергии, значительно превышающее количество энергии, полученное от сгорания менее плотного топлива, то применение летнего вида ДТ более экономично.

Использование такого вида топлива в зимний период не повысит его показатель рентабельности. Это обусловлено тем, что в составе летнего топлива, кроме керосиново-газойливых углеводородов, в которых сосредоточен весь запас топливной энергии содержатся растворенные парафиновые элементы. Эти компоненты обладают особенностью застывать даже при небольшом снижении температурных показателей солярки. При этом дизельное топливо становится вязким, пропускная способность фильтров снижается.

Для повышения эффективности работы ДВС в дизельное топливо, применяемое в холодное время года, добавляют различные присадки, которые являются ингибитором процесса затвердевания парафинов и повышения плотности топлива. Такие добавки хоть и понижают температуру загущения солярки, но на его плотность влияют в малой степени. Казалось бы, что при введении в летнее топливо соответствующей присадки, можно использовать его в качестве зимнего, но это не соответствует истине. Так как вводимый в ДТ компонент всего лишь понижает температуру загущения парафиновых компонентов топлива.

Само горючее при этом свою плотность не утратит, и с понижением температурных показателей продолжит густеть, что приведет к нарушениям в работе двигателя. Еще одним заблуждением является то, что при добавлении присадки в застывшее ДТ возможно снизить его плотность. Соответственно, плотность горючего является важным показателем в холодное время года. В жаркое время более актуальны такие характеристики как процентное содержание серы и цетановое число.

Естественно, из-за изменения плотности солярки, экономическая эффективность топлива зимой существенно снижается. Этому способствуют еще такие факторы, как наледи и снежные заторы на дорогах, которые затрудняют процесс движения и повышают расход горючего.

Виды дизтоплива: параметры

Нередко водители или операторы техники забывают о таком недостатке ДТ, как способность его загустевания даже при незначительном морозе. Поэтому возникают ситуации, когда двигатель не запускается, и приходится решать проблему методами нагрева топливных баков открытым огнем, что довольно небезопасно. Чтобы избежать подобных проблем, следует заблаговременно и правильно приобретать соответствующую марку дизтоплива в зависимости от погодных условий и знать ее особенности. Ниже рассмотрим характеристики ДТ по его классам.

Летние марки

Особенность ДТЛ — сохранение рабочего жидкого состояния требуемой плотности при t°= 0 и больше градусов. Основные параметры летнего дизеля следующие:

  • цетановое число — больше 51 ед. при температуре использования до 45°С окружающего воздуха;
  • плотность — 845-865 кг/м3 при t использования 20-25°С;
  • вязкость — 4-6,1 кв. мм/ с при t°=19-25°С;
  • порог замерзания — -10°С.

Однако следует учесть, что в действительности, несмотря на то, что двигатель и работает, при незначительных температурах ниже «нуля», летние марки ДТ уже теряют свои эксплуатационные качества.

К недостаткам летнего ДТ можно отнести повышенную способность образования водяного конденсата, вода внутри бака с топливом отслаивается и скапливается внизу. Сбои в работе ДВС по большей части происходят именно по причине водяных пробок, которые блокируют ТНВД. Некоторые водители, чтобы избежать проблем с забором образовавшейся воды, располагают всасывающую трубку в баке несколько выше и время от времени отвинчивают пробку на его дне для слива конденсата. Специалисты рекомендуют водителям еще задолго до наступления холодов полностью сливать летнее ДТ и даже при умеренных температурах начинать пользоваться качественными зимними сортами.

Зимнее

ДТЗ — это наиболее популярный вид горючего в России, в средней полосе его используют преимущественно всесезонно. Нижний предел замерзания ДТЗ — минус 30. Однако для полярных регионов в зимний период рисковать применять этот вид ДТ не нужно. Главные характеристики зимнего горючего следующие:

  • цетановое число — 48 единиц при t использования от минус 30°С окружающего воздуха;
  • плотность — 825-845 кг/м3 при t использования от -30 до +15°С;
  • вязкость — от 1,8 до 5.1 кв. мм/с максимум при t от -20 до +15°С.

Параметры вязкости для ДТЗ здесь имеют более широкий диапазон ввиду его использования не только в мороз, но при плюсовых весенне-осенних температурах.

Арктическое

ДТА — это незаменимый вид топлива в регионах, где температура окружающего воздуха часто опускается ниже тридцати. Этот дизель способен выдерживать даже антарктические условия зимы, а со специальными присадками сохранять рабочие свойства при температуре минус 55°С. Характерные показатели арктического топлива следующие:

  • цетановое число — 40 единиц при t использования от -30°С;
  • плотность — 760-820 кг/м3 при t использования от -30 до 0°С;
  • вязкость — от 1,45 до 4,6 кв.мм/с максимум при t -30 — 0°С.

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов (стройматериалы, древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен. Удельная теплота сгорания некоторых горючих материалов

Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1
  1. Абрютин А. А. и др. Тепловой расчет котлов. Нормативный метод.
  2. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  3. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  4. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  5. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  6. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2020 — 970 с.

Воспламенение — жидкое топливо

Воспламенение жидкого топлива определяется как выделением тепла, так и его потерей через стенки камеры сгорания ( или реакционного сосуда), пропорциональной температуре реакции, по известной формуле теплоотдачи qome — аР ( Тгаза — Тстен) от газа к стенке.

Температура воспламенения жидкого топлива обычно ненамного превышает температуру вспышки. Значительно выше температура самовоспламенения жидкого топлива, определяемая как температура, при которой смесь паров топлива с ВОЗДУХОМ воспламеняется без источника огня.

Температура воспламенения жидкого топлива — температура, при которой нагреваемое в установленных стандартом условиях топливо загорается при поднесении к нему пламени и горит не менее 5 сек.

Температура воспламенения жидкого топлива ( мазута) составляет примерно 500 С. Но при более низких температурах ( от 85 до 125 С и несколько выше) его пары, находящиеся над поверхностью мазута, воспламеняются при поднесении к ним открытого пламени ( например, зажженной спички), хотя сам мазут при этом не загорается.

Температура воспламенения жидкого топлива обычно ненамного превышает температуру вспышки. Для одного и того же нефтепродукта разность этих температур составляет не более 60 — 70 С. Температура самовоспламенения мазутов находится в пределах 500 — 600 С. В присутствии катализаторов и при обогащении воздуха кислородом температура самовоспламенения заметно снижается.

Температура воспламенения жидкого топлива — температура, при которой нагреваемое в установленных стандартом условиях ( ГОСТ 4333 — 48) топливо загорается при поднесении к нему пламени и горит не менее 5 сек.

Образование длух очагов турбулентного горения в дизельном цикле.

При воспламенении жидкого топлива вопрос об исходном соотношении топливо: воздух ( номинальный состав смеси) утрачивает смысл, поскольку в процессе смесеобразования создается поле концентраций в пределах а от 0 до оо. Поэтому изменение номинального соотношения топливо: воздух не влияет на дизельное воспламенение

Общая задержка воспламенения жидкого топлива складывается пз физической составляющей тфиз, соответствующей времени, затрачиваемому на распад топливной струи на капли, частичное их испарение и смешение паров топлива с воздухом, и химической составляющей тхим аналогичной задержке воспламенения однородной газовой смеси. Учитывая, что химические и физические процессы развиваются параллельно, с небольшим сдвигом по фазе, оценить длительность физической составляющей затруднительно.

Тот факт что воспламенение жидких топлив от сжатия осуществляется тем легче, чем легче возникает детонационное воспламенение того же топлива ( в гомогенной паровоздушной смеси) в двигателе с искровым зажиганием, означает принципиальное сходство этих двух типов воспламенения. Это предположение подтверждается и тем, что оба вида воспламенения развиваются примерно в одинаковых физических условиях. Так, например, топливо с 04 54 детонирует, в стандартных условиях испытания при е 5

Тот факт что воспламенение жидких топлив от сжатия осуществляется тем легче, чем легче возникает детонационное воспламенение того же топлива ( в гомогенной паровоздушной смеси) в двигателе с искровым зажиганием, означает принципиальное сходство этих двух типов воспламенения. Это предположение подтверждается и тем, что оба вида воспламенения развиваются примерно в одинаковых физических условиях. Так, например, топливо с 04 54 детонирует, в стандартных условиях испытания при е 5

Ек при кинетическом анализе воспламенения жидких топлив может привести к неправильным выводам о характере процесса воспламенения.

Колосниковая решетка, собранная из угловой стали.

Эта же решетка используется для воспламенения жидкого топлива. Последний, будучи в раскаленном состоянии, воспламеняет горючую смесь, поступающую из форсунки. Экран-отражатель 3 защищает стенки топки ( жаровой трубы) от непосредственного воздействия факела и аккумулирует некоторое количество тепла. Во время работы котла колосниковые плиты охлаждаются воздухом, поступающим через щели из зольника.

Результаты испытаний двух котлов ТГМ-84А, оборудованных мазутными горелками различной конструкции.| Схема движения топлива и воздуха в зоне воспламенения мазута, выходящего из вихревой горелки — ( по испытаниям модели.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector