Температура возгорания топлива

Горение свечи

Горение свечи подобно горению спички или зажигалки. А строение пламени свечи напоминает раскаленный газовый поток, который вытягивается вверх за счет выталкивающих сил. Процесс начинается с нагревания фитиля, за которым следует испарение парафина.

Самую нижнюю зону, находящуюся внутри и прилегающую к нити, называют первой областью. Она обладает небольшим свечением синего цвета из-за большого количества топлива, но малого объема кислородной смеси. Здесь осуществляется процесс неполного сгорания веществ с выделением угарного газа, который в дальнейшем окисляется.

Первую зону окружает светящаяся вторая оболочка, характеризующая строение пламени свечи. В нее поступает больший кислородный объем, что обуславливает продолжение окислительной реакции с участием топливных молекул. Температурные показатели здесь будут выше, чем в темной зоне, но недостаточные для конечного разложения. Именно в первых двух областях при сильном нагревании капелек несгоревшего топлива и угольных частичек появляется светящийся эффект.

Вторая зона окружена слабозаметной оболочкой с высокими температурными значениями. В нее заходит много кислородных молекул, что способствует полному догоранию топливных частичек. После окисления веществ, в третьей зоне светящийся эффект не наблюдается.

Сварочное пламя

Данный вид огня образуется в результате сгорания смеси из газа или пара жидкости с кислородом чистого воздуха.

Примером служит формирование пламени кислородно-ацетиленового. В нем выделяют:

  • зону ядра;
  • среднюю область восстановления;
  • факельную крайнюю зону.

Так горят многие газокислородные смеси. Различия в соотношении ацетилена и окислителя приводят к разному типу пламени. Оно может быть нормального, науглероживающего (ацетиленистого) и окислительного строения.

Теоретически процесс неполного сгорания ацетилена в чистом кислороде можно охарактеризовать следующим уравнением: HCCH + O2 → H2 + CO +CO (для реакции необходима одна моль O2).

Полученный же молекулярный водород и угарный газ реагируют с воздушным кислородом. Конечными продуктами является вода и оксид четырехвалентного углерода. Уравнение выглядит так: CO + CO + H2 + 1½O2 → CO2 + CO2 +H2O. Для этой реакции необходимо 1,5 моля кислорода. При суммировании O2 получается, что 2,5 моль затрачивается на 1 моль HCCH. А так как на практике трудно найти идеально чистый кислород (часто он имеет небольшое загрязнение примесями), то соотношение O2 к HCCH будет 1,10 к 1,20.

Когда значение пропорции кислорода к ацетилену меньше 1,10, возникает науглероживающее пламя. Строение его имеет увеличенное ядро, очертания его становятся расплывчатыми. Из такого огня выделяется копоть, вследствие недостатка кислородных молекул.

Если же соотношение газов больше 1,20, то получается окислительное пламя с кислородным избытком. Лишние его молекулы разрушают атомы железа и другие компоненты стальной горелки. В таком пламени ядерная часть становится короткой и имеет заострения.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·106 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг. Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

Топливо Удельная теплота сгорания, МДж/кг
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Виды горючего

Оно бывает разным. Но нефтепродукты и другое топливо легко поддаются воспламенению.

Классификация следующая:

В каком агрегатном состоянии находиться Происхождение горючих материалов
Естественные Искусственные
Жидком Нефть. Бензин, дизельное топливо, смолы, керосин.
Газообразном Природный и промышленный. Генераторный, светильный, водяной.
Твердом Уголь, сланцы, дрова и торфяные породы. Кокс, пылевидное и в брикетах топливо.

Температура возгорания керосина и других продуктов отличается. Измерять ее достаточно сложно. Также разняться правила тушения. Твердыми материалами естественно пользуются для нагрева помещений люди, имеющие котел.

Размораживание всей топливной системы

Важно учесть, что влага может превратиться в лед не только в топливном насосе, но и во всей системе. Для размораживаться понадобится отапливаемый гараж, в крайнем случае придется снять отдельные узлы и оставить их в теплом боксе

После оттаивания детали следует продуть воздухом, а в некоторых случаях предварительно промыть их.

Для отогревания можно воспользоваться строительным феном. Автомобилисты, не знающие, как быть, когда замерз автомобильный бензонасос и что делать в таком случае, бывает, используют паяльную лампу или факел. Этого делать нельзя категорически, потому что приводит к возгоранию топливных паров.

Оперативно решить проблему с работоспособностью авто поможет тепловая пушка, тем более, что не у всех автомобилистов есть отапливаемый гараж. Через 2-3 часа вопрос будет решен. После отогревания необходимо слить все горючее, и залить новую порцию топлива. В противном случае необходимость отогревать систему возникнет вновь.

Температура вспышки бензина

Температура вспышки бензина – это такой тепловой порог, при котором свободно отделяющиеся, более лёгкие фракции бензина воспламеняются от источника открытого пламени при нахождении этого источника непосредственно над исследуемым образцом.

На практике температуру вспышки определяют методом нагрева в открытом тигле.

В небольшую открытую ёмкость наливают исследуемое топливо. Далее его медленно разогревают без привлечения открытого пламени (например, на электроплите). Параллельно контролируется температура в режиме реального времени. Каждый раз при повышении температуры бензина на 1°C на небольшой высоте над его поверхностью (так, чтобы открытое пламя не соприкасалось с бензином) проводят источником пламени. В тот момент, когда появится огонь, и фиксируют температуру вспышки.

Проще говоря, температура вспышки отмечает тот порог, при котором концентрация в воздухе свободно испаряющегося бензина достигает величины, достаточной для воспламенения под воздействием открытого источника огня.

Температура вспышки бензина

У бензина нет собственной химической формулы. Он состоит из десятков компонентов, без учета присадок. Привычное обозначение (А95) является показателем октанового числа.

Под температурой вспышки подразумевается минимальный порог нагрева, при котором пары способны воспламенится от открытого источника. Бензин относится к наиболее пожароопасным нефтепродуктам (воспламенение при минус 400С).

Температура воспламенения – минимальный показатель, при котором топливо-воздушная смесь вспыхивает от стороннего источника и горит от испарения не менее 5 секунд. Температура горения превышает температуру вспышки на 10-15 градусов.

Самовоспламенение – значение, при котором горячие пары бензина возгораются без постороннего источника. Этот показатель необходим для:

  • разделения веществ по группам пожароопасности;
  • расчета электрооборудования;
  • выяснения причин возгораний.

Бензин применяют на моторах с искровым зажиганием. Перед подачей в цилиндр топливо-воздушная смесь нагревается выше температуры вспышки.

2 условия воспламенения:

  1. Бензин находится в газообразном состоянии.
  2. Соотношение топлива и воздуха в пределах возгорания.

Характеристика

Сперва разберемся с обозначениями: далее A — это воздух (кислород), F — топливо. Дизельное сгорание характеризуется низким общим отношением A / F. Наименьшее среднее значение A / F часто наблюдается в условиях пикового момента. Чтобы избежать чрезмерного образования дыма, A / F при пиковом моменте обычно поддерживается выше 25:1, что значительно выше стехиометрического (химически правильного) отношения эквивалентности около 14,4:1. Это также касается всех активаторов горения дизтоплива.

В дизельных двигателях с турбонаддувом отношение A / F на холостом ходу может превышать 160:1. Следовательно, избыточный воздух, присутствующий в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже отработанными газами. При открытии выпускного клапана избыток воздуха вместе с продуктами сгорания истощается, что объясняет окислительный характер выхлопа дизеля.

Когда горит дизтопливо? Этот процесс происходит после того, как испаренное горючее смешивается с воздухом, образует локально богатую смесь. Также на этом этапе достигается надлежащая температура горения дизельного топлива. Однако общее отношение A / F невелико. Другими словами можно сказать, что большая часть воздуха, впускаемого в цилиндр дизельного двигателя, сжимается и нагревается, но никогда не участвует в процессе сгорания. Кислород в избытке воздуха помогает окислять газообразные углеводороды и окись углерода, снижая их до крайне малых концентраций в выхлопных газах. Этот процесс гораздо более важен, чем температура горения дизельного топлива.

Топлива. Высшая теплотворная способность — таблица. (Удельная теплота сгорания). Вариант для печати.

Приведенные в этой таблице величины соответствуют высшей теплотворной способности для сгорания при постянном давлении 1 bar и температуре 0oC.

  • Высшая теплотворная способность (Higher Calorific Value = Gross Calorific Value = GCV) – количество теплоты, выделяемой при полном сгорании топлива, охлаждении продуктов сгорания до температуры топлива и конденсации водяного пара, образовавшегося при окислении водорода, входящего в состав топлива.
  • Низшая теплотворная способность (Lower Calorific Value = Net Calorific Value = NCV) – количество теплоты, выделяемой при полном сгорании топлива без конденсации водяного пара.

Таблица ниже дает отличное представление о максимально возможном уровне той энергии, которую часто называют удельной теплотой сгорания для сухих (когда об этом имеет смысл говорить) топлив.

Энергия перешедшая при сгорании в водяной пар пойдет на парообразование и нагрев пара.

Интересной практической величиной является также «объемная » теплота сгорания. Ее можно прикинуть зная плотность. Для газов (в конце таблицы) и приведена «объемная» вышая теплотворная способность (для некоторых и та и другая).

Топлива. Высшая теплотворная способность — таблица. (Удельная теплота сгорания).
Топлива, массовая характеристика: Высшая теплотворная способность
кДж/кг ккал/кг БТЕ/фунт, Btu/lb
Ацетон,Acetone 29 000 6 900 12 500
Бензин, Gasoline, Petrol 47 300 11 250 20 400
Бутан, Butane C4H10 49 500 11 800 20 900
Водород, Hydrogen 141 800 33 800 61 000
Газойль, Gas oil 38 000 9 050 16 400
Глицерин, Glycerin 19 000 4 550 8 150
Гудрон, Битум, Tar 36 000 8 600 15 450
Дизтопливо, дизельное топливо, Diesel 44 800 10 700 19 300
Дерево сухое, Wood (dry) 14 400 — 17 400 3 450 — 4 150 6 200 — 7 500
Керосин, Kerosene 35,000 8,350 15 400
Кокс, Coke 28 000 — 31 000 6 650-7 400 12 000 — 13 500
Мазут, Heavy fuel oil 41 200 9 800 17 700
Метан, Methane 55 550 13 250 23 900
Порох, Gun powder 4 000 950 1 700
Пропан, Propane 50 350 12 000 21 650
Растительные масла, Oils vegetable 39 000 — 48,000 9 300 — 11 450 16 750 — 20 650
Скипидар, Turpentine 44 000 10 500 18 900
Спирт, Alcohol, 96% , Ethanol 30 000 7 150 12 900
Сырая нефть, Petroleum 43 000 10 250 18 500
Торф, Peat 13 800 — 20 500 3 300 — 4 900 5 500 — 8 800
Уголь-антрацит, Anthracite 32 500 — 34 000 7 750-8 100 14 000 — 14 500
Уголь битуминозный (жирный), Bituminous coal 17 000 — 23 250 4 050-5 500 7 300 — 10 000
Уголь древесный, Charcoal 29 600 7 050 12 800
Уголь каменный, Coal 15 000 — 27 000 3 550-6 450 8 000 — 14 000
Уголь бурый, лигнит, Lignite 16 300 3 900 7 000
Уголь -полуантрацит, Semi anthracite 26 700 — 32 500 6 350 — 7 750 11 500 — 14 000
Эфир, Ether 43 000 10 250 18 500
Газы, объемная характеристика: кДж/м3 ккал/м3 БТЕ/фут3, Btu/ft3
Ацетилен, Acetylene 56 000 13 350 728
Бутан, Butane C4H10 133 000 31 750 1 700
Водород, Hydrogen 13 000 3 100 170
Метан, Methane CH4 39 800 9 500 520
Природный газ, Natural gas 35 000- 43 000 8 350-10 250 455 — 560
Пропан, Propane C3H8 101 000 24 100 1 310

Примеры

Топливо точка возгорания самовоспламенения температуру
Этанол (70%) 16,6 ° C (61,9 ° F) 363 ° С (685 ° F)
Топливо Coleman (Белый газ) −4 ° С (25 ° F) 215 ° С (419 ° F)
Бензин (бензин) -43 ° С (-45 ° F) 280 ° С (536 ° F)
Дизель (2-D) > 52 ° C (126 ° F) 210 ° С (410 ° F)
Реактивное топливо (A / A-1) > 38 ° C (100 ° F) 210 ° С (410 ° F)
Керосин > 38–72 ° C (100–162 ° F) 220 ° С (428 ° F)
Растительное масло (канола) 327 ° С (621 ° F) 424 ° С (795 ° F)
Биодизель > 130 ° C (266 ° F)

Бензин (бензин) — это топливо, используемое в двигателе с искровым зажиганием . Топливо смешивается с воздухом в пределах его воспламеняемости и нагревается за счет сжатия и подчиняется закону Бойля выше его точки вспышки, а затем воспламеняется от свечи зажигания . Для воспламенения топливо должно иметь низкую температуру воспламенения, но во избежание преждевременного воспламенения, вызванного остаточным теплом в горячей камере сгорания, топливо должно иметь высокую температуру самовоспламенения .

Температуры вспышки дизельного топлива варьируются от 52 до 96 ° C (от 126 до 205 ° F). Дизель подходит для использования в двигателе с воспламенением от сжатия . Воздух сжимается до тех пор, пока он не нагреется выше температуры самовоспламенения топлива, которое затем впрыскивается в виде струи под высоким давлением, удерживая топливно-воздушную смесь в пределах воспламеняемости. Двигатель, работающий на дизельном топливе, не имеет источника воспламенения (например, свечи зажигания в бензиновом двигателе), поэтому дизельное топливо должно иметь высокую температуру вспышки и низкую температуру самовоспламенения.

Температуры вспышки реактивного топлива также меняются в зависимости от состава топлива. И Jet A, и Jet A-1 имеют температуру воспламенения от 38 до 66 ° C (от 100 до 151 ° F), что близко к температуре серийного керосина. Тем не менее, как Jet B, так и JP-4 имеют температуры вспышки от -23 до -1 ° C (от -9 до 30 ° F).

Добавки (присадки)

Улучшение качества путем добавления присадок, что является обычной практикой для бензина уже в течение многих лет, стало недавно популярным и для дизельного топлива (дизельное топливо марок Super и Premiom). Используются в основном такие добавки, которые оказывают множественное действие:

  • присадки для улучшения воспламенения увеличивают цетановое число и отвечают, в частности, за более «мягкое» сгорание;
  • моющие присадки (детергенты) используются для предотвращения закоксовывания форсунок;
  • ингибиторы (замедлители) коррозии необходимы для предотвращения коррозии металлических деталей (в случае попадания воды в топливную систему);
  • антивспенивающие присадки служат для облегчения заполнения топливного бака.

Общая концентрация присадок обычно не превышает 0,1%, так что такие физические характеристики топлива как плотность, вязкость и кривая кипения не изменяются.

Что такое бензин?

Этот пункт идёт первым, потому что он крайне важен для понимания вопроса. Забегая вперёд, скажем так: вы никогда не найдёте химической формулы бензина. Как, например, можно без проблем отыскать формулу метана или другого однокомпонентного нефтепродукта

Любой источник, который покажет вам формулу автомобильного бензина (не важно, будь то вышедший из оборота АИ-76 или наиболее распространённый сейчас АИ-95) однозначно заблуждается

Дело в том, что бензин – это многокомпонентная жидкость, в которой как минимум присутствует не менее десятка различных веществ и ещё больше их производных. И это только база. Перечень присадок, используемых в различных бензинах, в разные промежутки времени и для различных условий эксплуатации, занимает внушительный лист из нескольких десятков позиций. Поэтому невозможно выразить одной химической формулой состав бензина.

Краткое определение бензина можно дать такое: легковоспламеняющаяся смесь, состоящая из лёгких фракций различных углеводородов.

Температура — самовоспламенение

Температура самовоспламенения определяется специальными приборами и составляет для горючих жидкостей 400 — 700 С.

Температура самовоспламенения — минимальная темпера тура, при которой горючее вещество загорается без внешних источников зажигания при соприкосновении с кислородом воздуха.

Температура самовоспламенения характеризует возможность начала пламенного горения вещества при контакте его с кислородом воздуха. Температура самовоспламенения горючей системы обычно относится к горючему веществу, входящему в нее. Она не является постоянной для одного и того же горючего вещества и изменяется в зависимости от его концентрации, давления, размеров, формы и материала сосудов и от других факторов. С увеличением объема и повышением давления смеси температура самовоспламенения снижается. Так, например, у бензина температура самовоспламенения составляет 480 С при абсолютном давлении 0 1 МН / м2 ( 1 кгс / см2) и 310 С при 1 МН / м2 ( 10 кгс / см2), а у керосина соответственно 460 и 250 С.

Температура самовоспламенения — наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение вещества.

Температура самовоспламенения характеризует способность нефтепродуктов к самовозгоранию в присутствии кислорода воздуха, но без воздействия открытого огня. При атмосферном давлении она составляет для дизельного топлива 300 — 330 С, для керосина 290 — 430 С, для бензина 510 — 530 С.

Температура самовоспламенения — самая низкая температура вещества, при которой в условиях специальных испытаний происходит резкое увеличение скорости экзотермических реакций, заканчивающихся пламенным горением.

Температура самовоспламенения — наименьшая температура окружающей среды, при которой в условиях специальных испытаний наблюдается самовоспламенение вещества.

Температура самовоспламенения не имеет точного значения. Она зависит от содержания горючего газа в газовоздушной смеси, степени однородности смеси, формы и размеров сосуда, в котором происходит нагревание смеси, каталитического влияния стенок сосуда, быстроты и способа нагрева смеси и давления, под которым находится смесь.

Температура самовоспламенения — это та температура, до которой нужно нагреть вещество, чтобы оно загорелось.

Температура самовоспламенения — Это наименьшая температура паров или газов, до которой их нужно нагреть, чтобы они воспламенились при наличии окислителя без внесения в них открытого источника зажигания.

Температура самовоспламенения играет существенную роль в оценке качества дизельных тонлнв.

Температура самовоспламенения понижается при увеличении концентрации кислорода в воздухе и повышении давления в цилиндре двигателя. Но даже в этих условиях высокоароматизированные топлива могут не воспламеняться.

Температура самовоспламенения для данной горючей смеси зависит от объема и формы сосуда, в котором она находится. Чем больше объем горючей смеси, тем меньше поверхность теплоотдачи, приходящаяся на единицу ее объема. Если теплоотдача мала, то самовоспламенение возникает уже при небольшой температуре. Наоборот, при очень малом объеме горючей смеси поверхность теплоотдачи, приходящаяся на единицу объема, становится такой большой, что теплоотдача во много раз превышает теплообразование и самовоспламенения не произойдет или оно возникнет при очень высокой температуре.

Температура самовоспламенения — самая низкая температура смеси паров жидкости с воздухом, при нагреве до которой происходит резкое увеличение скорости экзотермических реакций, приводящее к возникновению пламенного горения.

Температура самовоспламенения продуктов в воздухе.

Оптимизация

Важным параметром для оптимизации системы сгорания дизельного топлива в двигателе является доля доступного воздуха, участвующего в этом процессе. Коэффициент К (отношение объема поршневой чаши к зазору) является приблизительной мерой доли воздуха, доступного для сгорания. Уменьшение рабочего объема двигателя приводит к уменьшению относительного коэффициента К и к тенденции ухудшения характеристик сгорания. Для данного смещения и при постоянной степени сжатия коэффициент K можно улучшить, выбрав более длинный ход. На подбор соотношения диаметра цилиндра к двигателю может повлиять фактор K и ряд других факторов, таких как упаковка двигателя, отверстия и клапаны и так далее.

Что будет, если вместо 92 залить 95?

Если зальете в двигатель, предназначенный для 92, 95-ый бензин, то ничего плохого не будет, скорее лучше. Т.е. двигатель будет работать мягче. Это необходимо понимать, что если заливаете топливо с более хорошими характеристиками, то для двигателя это еще лучше. Т.е. детонация исключается практически вообще, соответственно топливо будет воспламеняться именно от свечи зажигания, а не от степени сжатия.

Поэтому заливая топливо с более высоким октановым числом, двигатель будет чуть лучше, чуть мягче работать. Т.е. большему октановому числу нужны более высокая температура и степень сжатия. Таким образом, такое топливо дольше горит и выделяет больше тепла. Но не стоит ожидать от него большого прилива мощности, либо уменьшения расхода, Вы этого не почувствуете.

Добавки (присадки)

Улучшение качества путем добавления присадок, что является обычной практикой для бензина уже в течение многих лет, стало недавно популярным и для дизельного топлива (дизельное топливо марок Super и Premiom). Используются в основном такие добавки, которые оказывают множественное действие:

  • присадки для улучшения воспламенения увеличивают цетановое число и отвечают, в частности, за более «мягкое» сгорание;
  • моющие присадки (детергенты) используются для предотвращения закоксовывания форсунок;
  • ингибиторы (замедлители) коррозии необходимы для предотвращения коррозии металлических деталей (в случае попадания воды в топливную систему);
  • антивспенивающие присадки служат для облегчения заполнения топливного бака.

Общая концентрация присадок обычно не превышает 0,1%, так что такие физические характеристики топлива как плотность, вязкость и кривая кипения не изменяются.

Физико-химические свойства бензина

Какие физические и химические свойства топлива нужно знать автолюбителю? Жидкости в составе бензина называются фракциями и различаются температурой кипения, плотностью, вязкостью, скоростью вступления в реакцию с воздухом и так далее. Помимо углеводородных фракций, в нем содержатся природные соединения серы, водорода, кислорода, со своими свойствами. Какой окажется доля разных фракций в конкретном бензине чаще всего определить нельзя. Есть и разные прибавки, которые нужны для улучшения качества топлива, его хранения, устойчивости к детонации

Большую часть этих характеристик важно знать скорее инженерам, которые проверяют качество бензина перед тем, как он попадет на заправку

Для обывателя важно понимать, на что влияет температура кипения бензина и октановое число. Для разных марок бензина это будут разные показатели

Октановое число входит в название марки бензина. Так, название АИ-92 означает, что бензин тестировался исследовательским способом (АИ), который показал, что его октановое число 92. Эта цифра показывает, насколько бензин устойчив к детонации, или взрыву. За точку отчета, то есть 100, принят изооктан – очень устойчивый к детонации углеводород; октановое число показывает, каков процент изооктана в смеси с гептаном, у которого детонационные свойства низкие. Фактически октановое число 92 означает, что бензин этой марки устойчив к детонации так же, как смесь изооктана и гептана 92:8; в бензине АИ-95 эта пропорция 95:5, то есть детонационная устойчивость выше, и так далее. Число может быть и выше 100, если свойства топлива выше, чем у изооктана.

Тепловые характеристики древесины

Породы древесины различаются по плотности, структуре, количеству и составу смол. Все эти факторы влияют на теплотворность дров, на температуру, при которой они сгорают, и на характеристики пламени.

Древесина тополя пористая, такие дрова горят ярко, но максимальный температурный показатель достигает лишь 500 градусов. Плотные породы дерева (бук, ясень, граб), сгорая, выделяют свыше 1000 градусов тепла. Показатели березы несколько ниже – около 800 градусов. Лиственница и дуб разгораются жарче, выдавая до 900 градусов тепла. Сосновые и еловые дрова горят при 620-630 градусах.

Качество дров и как правильно выбирать

У берёзовых дров лучшее соотношение теплоэффективности и стоимости – топить более дорогими породами с высокими показателями температуры сгорания экономически невыгодно.

Ель, пихта и сосна пригодны для разведения костров – эти хвойные породы обеспечивают относительно умеренное тепло. Но в твердотопливном котле, в печи или камине такие дрова использовать не рекомендуется – они выделяют недостаточно тепла для эффективного обогрева жилища и приготовления пищи, сгорают с образованием большого количества сажи.

Низкокачественными дровами считается топливо из осины, липы, тополя, ивы и ольхи – пористая древесина при горении выделяет мало тепла. Ольха и некоторые другие виды древесины «стреляют» угольками в процессе горения, что может привести к возникновению пожара, если дрова использовать для топки открытого камина.

При выборе также следует обратить внимание на степень влажности древесины – сырые дрова хуже горят и оставляют больше золы

Влияние состава рабочей смеси

Состав рабочей смеси оценивается коэффициентом избытка воздуха а. Состав влияет на скорость сгорания, количество выделяемого тепла, вследствие чего изменяются давление и температура газов в цилиндре. Минимальное значение угла опережения зажигания, периода задержки воспламенения и максимальное давление в цилиндре достигаются при а =0,85…0,9. При этом значении коэффициента избытка воздуха двигатель развивает максимальную мощность. По мере обеднения состава смеси (а>0,9) изменяется величина оптимального значения Фз, уменьшается величина максимального давления сгорания.

Для каждого двигателя принят свой оптимальный состав рабочей смеси, при котором на данном режиме достигается минимальный удельный расход топлива. Для двигателей со степенью сжатия около 8 при почти полном открытии дроссельной заслонки экономичный состав смеси получается при и =1,15…1,2. Для каждого скоростного и нагрузочного режима работы двигателя с искровым зажиганием существует также свое оптимальное значение угла опережения зажигания. Поэтому в конструкции таких двигателей предусмотрено устройство, обеспечивающее автоматически в зависимости от режима работы двигателя оптимальное значение ф3.

Правила транспортировки

Транспортировка большей части нефтепродуктов допускается всеми видами транспорта: автомобильным, железнодорожным, авиационным. Особые требования выдвигают к тарам – емкостям под нефтяные продукты. Они обычно изготовлены из алюминия с защитным внутренним слоем или стали. Емкости плотно закрывают крышкой с прокладкой, создаются все условия для полной герметичности. Тара должна быть обозначена соответствующей маркировкой – номер UN вещества, класс опасности. Бочки с горючим размещают вертикально и жестко фиксируют. Без оформления разрешения Минтранса и согласования маршрута допускается транспортировка 1000 литров бензина.

Цистерны автопоездов в обязательном порядке обозначают специальной маркировкой. Бензовоз должен быть оборудован заземляющим устройством. При необходимости транспортировки свыше 1000 литров горючего водитель обязан иметь при себе:

  • маршрутный лист с указанным местом отправления и конечным пунктом;
  • соглашение о перевозке опасных грузов;
  • допуск к транспортировке грузов.

Доставкой взрывоопасных веществ, включая углеводородные смеси, могут заниматься обученные водители. У них должна быть медицинская справка. Документ подтверждает пройденный этап медицинского контроля. Компания-перевозчик обязательно должна располагать разрешением на перевозку опасных грузов внутри страны.

Оценка статьи:

Загрузка…

Бензин и его температура вспышки Ссылка на основную публикацию

Почему дизельное топливо замерзает зимой

Все дело в наличии парафинов. При понижении температуры они в составе топлива кристаллизуются, вязкость ДТ возрастает. Загустевшее топливо с трудом проходит через элементы топливной системы — двигатель или не заводится или заводится с трудом, после запуска работает неустойчиво, троит, глохнет.

Если температура продолжает падать, в ДТ начинают образовываться сгустки парафинов, оно превращается в гель и забивает проходные каналы топливного фильтра. В таком случае двигатель завести уже невозможно.

Владельцы по-разному решают проблему замерзающего топлива: одни используют нагревательные устройства для подогрева топлива в баке, другие добавляют присадки.

Лучше всего перед приходом холодов поменять (возить с собой) топливный фильтр, проверить работы свечей накала, слить из топливного бака осадок и заправляться на проверенных заправках качественным топливом.

Замерзание бензина

Бензин является наиболее популярным видом горючего, имеет несколько разновидностей и, в отличие от дизеля, более токсичен. Его получают несколькими способами:

  • путем прямой перегонки из нефти;
  • методом каталитического и термического крекинга.

В зависимости от количества тех или иных ингредиентов бензин делится на марки с разными эксплуатационными характеристиками:

Чем выше цифра, тем он чище и качественнее, и соответственно, дороже. Нефть, из которой делают топливо, состоит из двух основных компонентов – углерода (около 85%) и водорода (около 15%). Качественный бензин имеет порог замораживания -118°С. При этой температуре он напоминает густое желеобразное вещество.

ГОСТ Р 51105-97 и ГОСТ Р 51866-2002 характеризуют содержание серы в топливе, но и минимальную температуру, при которой бензин популярных марок должен зажигаться, а не густеть – 62°С. Однако многие, особенно «безымянные» заправки, часто разводят топливо менее качественным или даже водой. Это приводит к поломке автомобиля, так как низкое качество влияет на работу всей ходовой системы.

Государственный стандарт требует от производителей, чтобы химический состав бензина любой марки оставался неизменным в течение не менее пяти лет при соблюдении правил хранения. Однако на практике зачастую топливо имеет октановое число ниже заявленного (например, не 95, а 92).

В этом виноваты недобросовестные продавцы, что добавляют сжиженный газ в топливные баки, срок годности которых истек, а состав не соответствует ГОСТу. Это является причиной того, что в зимнее время происходит замерзание. Вода замерзает уже при 0°С, бензин начинает густеть, как и другие нефтехимические продукты. На сетках топливного фильтра образуется плотный слой, что не пропускает горючее.

Физико-химические свойства бензина меняются в зависимости от углеводородов и в каких пропорциях он содержится. Температура замерзания достигает -60°С, то есть практически все морозы в средней полосе горючее может выдержать без изменения вида. Состав в зависимости от соотношения различных фракций напрямую влияет на производительность

При производстве важно добиться правильного баланса для обеспечения работоспособности при низких температурах

Другие, менее токсичные соединения, такие как этиловый спирт или ацетон, могут быть использованы в качестве добавок. Например, добавление 100 мл спирта на литр бензина 92 увеличит октановое число до 95. Однако использование этих добавок неэкономично, хотя спирт и ацетон замерзают при температуре ниже указанной для горючего, что получают из нефти.

Пределы взрываемости

Пределы взрываемости выражены температурой горючего вещества и характеризуют граничные концентрации паров топлива в воздухе. Величиной определяют степень взрывоопасности бензина. С превышением концентрации верхнего предела происходит сгорание жидкости. Наименьшая концентрация паров горючего в воздухе, при которой происходит воспламенение от внешнего источника пламени с последующим распространением огня на весь объем, приводит к взрыву.

Взрывчатые смеси образуются при концентрации паров в воздухе от 70 до 120 г/м3.  Значения между ВКПР и НКПР именуют промежуточной взрываемостью: у бензина она составляет 0.7-8%. Итоговая величина зависит от состава реагента, наличия в топливе негорючих присадок. Для автомобильного двигателя особенно опасно детонационное топливо. Оно способствует быстрому распространению теплоты. Процесс приводит к физическому износу деталей цилиндро-поршневой группы. Предотвратить детонации можно путем регулярного технического обслуживания мотора, покупки высокооктанового горючего, установки свечей зажигания с подходящим калильным числом.

Еще одна интересная величина – температура кипения бензина. Находится в пределах от 50 до 110 градусов. Показатель зависит от состава того или иного топлива. Лишь водители со стажем помнят, как летом закипевшее в карбюраторе горючее останавливало транспортное средство. Причиной становились пробки: легкие фракции отделялись от тяжелых под видом пузырьков горючего газа из-за чрезмерного разогревания. Достаточно было постоять на обочине некоторое время. Образованные газы вновь становились жидкостью, система освобождалась от образованных пробок – машина продолжала свой путь.

Заключение

В заключение следует отметить, что ГБО пропан предпочтительнее устанавливать на городские седаны. Это поможет значительно съэкономить на топливе, не потерять в динамике и размере багажника.

Если же Вы рассматриваете вариант установки газа на грузовое авто, бус, или даже внедорожник, то здесь предпочтение стоит отдать метану. Для коммерческих целей установка природного газа на грузовой автомобиль будет экономически оправдана. А благодаря размерам автомобиля, и мощности двигателя метановая установка на грузовом автомобиле будет практически не ощутима.

А что Вы думает по поводу плюсом и минусов того или иного вида топлива? Оставляйте свои комментарии, и удачи Вам на дорогах!

ГБО Пропан и Метан

5

(100%)

3

vote

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector