Как работает двигатель?

Содержание:

Происхождение устройств

В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть «двигателями горячего воздуха», которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.

В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.

Более четырех цилиндровПравить

V-образный пятиципиндровый двигательПравить

С появлением четырехтактных двигателей в соревнованиях класса Gran Prix в 2002 году производители обратили свое внимание на разработку машин, согласующихся с всевозможными ограничениями веса и размеров. Для себя компания Honda сделала вывод, что V-образный пятицилиндровый двигатель служит идеальной схемой, отвечающей этим ограничениям

Этот двигатель с тремя цилиндрами, расположенными спереди, и двумя сзади, с поперечным расположением коленчатого вала в раме, подобен старому V-образному трехцилиндровому двухтактному двигателю и чрезвычайно компактен. Это не первый пятицилиндровый мотоциклетный двигатель (при том они очень популярны в автомобильной отрасли). Еще в 1965 году компания Honda (впервые) создала рядный пятиципиндровый двухтактный двигатель, способный развивать частоту 20.000 оборотов в минуту.

Рядный шестицилиндровый двигатель

История изобретения ДВС

Итак, в связи с тем, что первым двигателем внутреннего сгорания была пушка, необходимо было бы узнать имя изобретателя, но оно, к сожалению, потерялось в веках. Известно, только,что в Европе пушка появилась в 14-м веке, а в восточных странах еще в 13-м.

Христиан Гюйгенс (портрет слева) в начале 17-го века предложил внутрь цилиндра с поршнем насыпать немного пороха. Если этот порох поджечь, то поршень поднимется вверх и шток прикрепленный к поршеню может совершить некоторую работу. Затем аппарат необходимо было разобрать, засыпать новую порцию пороха и продолжить. Шток останавливался в верхнем положении при помощи специального фиксатора.

Конечно, на это сейчас мы смотрим с удивлением, но для 17-го века это был прорыв.

В 1690 году (конец 17-го века) Дени Папен (портрет справа) усовершенствовал эту конструкцию предложив вместо пороха залить на дно цилиндра воду. Если нагреть цилиндр вода испарится превратившись в пар и этот пар совершит работу подняв поршень. Затем поршень можно остудить пар внутри превратится в воду и процесс можно повторить.

Через 15 лет, в 1705 году английский кузнец Томас Ньюкомен предложил машину для откачки воды из шахт. Его аппарат состоял из котла, который производил пар.  Пар подавался в цилиндр и там совершал работу. Для быстрого охлаждения цилиндра он применил форсунку, которая впрыскивала холодную воду в этот цилиндр, тем самым охлаждая его. Конечно, периодически приходилось скопившуюся в цилиндре воду выливать, но машина его работала эффективно. Назвать такую машину двигателем внутреннего сгорания сложно, ведь нагрев воды происходит вне цилиндра, но такова история. Весь 18-й век посвящен изобретению конструкций работающих на использовании энергии пара.

Только в 1801 году французский изобретатель Филип Лебон придумал подавать в цилиндр светильный газ в смеси с воздухом и поджигать его там. Он даже получил патент на этот газовый двигатель. Но в связи с тем, что Лебон рано умер (в 1804 году в возрасте 35 лет), довести свое детище до практической модели не успел.

Этьен Ленуар (француз с бельгийскими корнями), придумывал различные механические конструкции, работая на гальваническом заводе. Именно он считается изобретателем первого работающего двигателя внутреннего сгорания.

Доработав идею Лебона, в 1860 году он взял за основу двухходовой поршень, который совершал работу двигаясь как вправо, так и влево. А смесь светильного газа и воздуха он поджигал в отдельной камере при помощи электрической искры. Направляя продукты сгорания (в зависимости от положения поршня) либо в правую, либо в левую полость, как пар у паровоза.

Как видим это опять не совсем похож на современный двигатель в нашем его понимании, но прародитель его это уж точно. Выпустив более 300 таких двигателей, он разбогател и перестал заниматься изобретательством. Изобретенный Августом Николаусом Отто двигатель вытеснил с рынка двигатели Ленуара. Именно Отто предложил и построил четырехтактный двигатель. КПД его двигателя достигал 15%, это почти в 3 раза выше чем у двигателей Ленуара. Кстати сказать современные бензиновые двигатели имеют КПД не выше 36%, это все чего мы достигли за 150 лет работы над двигателями внутреннего сгорания. На этом четырехтактном цикле работают сейчас большинство двигателей.

Только после изобретения двигателей работающих на жидком топливе (керосине и бензине), их вполне уже можно было устанавливать на повозки, что и сделал Карл Бенс в 1886 году.

В компании у Отто работали  Готлиб Даймлер (слева) и Вильгельм Майбах ( на фото слева).  И хотя предприятие работало прибыльно (двигателей Отто было продано более 42 тысяч штук), применение светильного газа резко сужало сферу применения. Даймлер и Майбах впоследствии организовали производство автомобилей постоянно их совершенствуя. Их имена знают практически все. Ведь именно они придумали автомобиль «Мерседес». Сын Вильгельма Майбаха – Карл (на фото справа),  занимался авиационными двигателями, а затем и выпуском знаменитых автомобилей «Майбах».

В 1893 году Рудольф Дизель запатентовал двигатель работающий на отходах производства бензина – солярке.В его двигателе смесь не нужно было воспламенять, она загоралась сама от высокой температуры в цилиндре. Но и смесь воздуха с топливом готовилась несколько по-другому. В его двигателе топливо (солярка) подавалась в цилиндр в конце цикла сжатия специальным насосом. Это было революционным прорывом. Многие современные бензиновые двигатели используют этот метод образования воздушно-топливной смеси. Дизельный же двигатель не претерпел особых изменений.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Двигатель внешнего сгорания Лукьянова

Юрий Лукьянов – это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

Схема

Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).

На этой схеме четко показаны основные элементы:

A – Распределительный вал.

B – Крышка клапанов.

C – Выпускной клапан, через который отводятся газы из камеры сгорания.

D – Выхлопное отверстие.

E – Головка цилиндра.

F – Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.

G – Блок мотора.

H – Маслосборник.

I – Поддон, куда стекает все масло.

J – Свеча зажигания, образующая искру для поджога топливной смеси.

K – Впускной клапан, через который в камеру сгорания попадает топливная смесь.

L – Впускное отверстие.

M – Поршень, который движется вверх-вниз.

N – Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.

O – Подшипник шатуна.

P – Коленчатый вал. Он вращается за счет движения поршня.

Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами)

Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня

Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и «жор» масла.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina H2 Speed

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Отношение диаметра цилиндра к ходу поршня

Одним из основополагающих конструктивных параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1 : 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент на низких оборотах. Как правило, короткоходные ДВС (особенно гоночные) имеют больший крутящий момент на единицу рабочего объема, но на относительно высоких оборотах (больше 5000 об/мин.). При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров, но при высоких рабочих оборотах скорость поршня в цилиндре не превышает скорости поршня более длинноходного на его рабочих оборотах.

Положительные и отрицательные стороны электрических двигателей асинхронного типа

К преимуществам асинхронных машин с короткозамкнутым ротором относятся:

  • Простота конструкционного исполнения и, как следствие, быстрота изготовления.
  • Низкая стоимость.
  • Несложная схема включения.
  • Относительное постоянство скорости вращения вала при увеличении напряжения сети.
  • Устойчивость к кратковременным перегрузкам.
  • Возможность подключить к однофазной сети трёхфазный аппарат.
  • Высокая степень надёжности.
  • Универсальность.
  • Значительный КПД.

Минусы:

  • Отсутствие возможности контроля скорости вращения ротора без мощностных потерь.
  • Уменьшение момента при увеличении нагрузки.
  • Недостаточно высокое значение пускового момента.
  • Если недогрузить устройство, то параметр cosφ резко увеличивается.
  • Достаточно высокие значения пускового тока

Теперь разберём достоинства агрегатов с ротором фазного типа:

  • Более высокий показатель вращающегося момента.
  • Возможность функционировать в условиях малой перегрузки.
  • Постоянство частоты, с которой вращается вал.
  • Малое значение пускового тока.
  • Возможность использовать АПУ.

Есть и недостатки:

  • Крупногабаритность.
  • Более низкий уровень КПД и cosφ.
  • Необходимость обслуживать щёточный механизм.

Как выбрать асинхронный двигатель? На что следует обращать внимание? Ответы на эти и многие другие вопросы вам лучше уточнить у опытных мастеров. Они с удовольствием окажут вам посильную помощь в выборе подходящей модели.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Поршневой ДВС с искровым зажиганием (двигатель Отто)

Является наиболее распространённым по количеству, поскольку число автомобилей в мире на 2014 год составляло более 1,2 млрд., и большая их часть приводится в движение двигателем Отто.

Бензиновый двигатель

Основная статья: Бензиновый двигатель внутреннего сгорания

Является наиболее распространённым вариантом, установлен на значительной части транспортных машин (ввиду меньшей массы, стоимости, хорошей экономичности и малошумности). Имеет два варианта системы подачи топлива: инжектор и карбюратор. В обоих случаях в цилиндре сжимается топливо-воздушная смесь, подверженная детонации, поэтому степень сжатия и уровень форсирования такого двигателя ограничены детонацией.

Карбюраторный двигатель

Основная статья: Карбюраторный двигатель

Особенностью является получение топливо-бензиновой смеси в специальном смесителе, карбюраторе. Ранее такие бензиновые двигатели преобладали; теперь, с развитием микропроцессоров, их область применения стремительно сокращается (применяются на маломощных ДВС, с низкими требованиями к расходу топлива).

Инжекторный двигатель

Особенностью является получение топливной смеси в коллекторе или открытых цилиндрах двигателя путём подачи инжекторной системой подачи топлива. В настоящий момент является преобладающим вариантом ДВС Отто, поскольку позволяет резко упростить электронное управление двигателем. Нужная степень однородности смеси достигается за счет увеличения давления форсуночного распыливания топлива.

Роторно-поршневой

Основная статья: Роторно-поршневой двигатель

Дополнительные сведения: Роторно-цилиндро-клапанный двигатель

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки, и потому — с выполнением экологических требований.

RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок

Обычно роторно-поршневые ДВС используют в качестве топлива бензин, но возможно и применение газа. Роторно-поршневой двигатель является ярким представителем бесшатунных ДВС, наряду с двигателем Баландина.

Газовые двигатели

Основная статья: Газовый двигатель

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются: уголь, торф, древесина.

Эти двигатели имеют широкое применение, например, в электростанциях малой и средней мощности, использующих в качестве топлива природный газ (в области высоких мощностей безраздельно господствуют газотурбинные энергоблоки).

Одноцилиндровые двигателиПравить

Типичный одноцилиндровый двухтактный двигатель

Типичный четырехтактный одноцилиндровый двигатель

Однако он обладает множеством недостатков с точки зрения характеристик двигателя.
Поскольку воспламенение смеси в одноцилиндровом четырехтактном двигателе происходит один раз за каждые 720 градусов поворота коленчатого вала, для поддержания вращения двигателя до его следующего рабочего хода необходимы большие маховики.

Для того чтобы избежать чрезмерного увеличения веса, маховики должны обладать большим диаметром и небольшой толщиной. Приходится максимально облегчать поршень, также необходим длинный шатун, и в итоге получается двигатель, называемый длинноходным. Характеристики такого двигателя хороши до определенного момента: он экономичен, обладает хорошей кривой мощности и характеристики момента таковы, что он может относительно легко обеспечивать динамичный разгон с низких частот вращения двигателя. Для использования великолепной характеристики мощности передаточные числа коробки передач могут быть «растянуты», за счет этого управление машиной становится не столь напряженным. Действительно, влияние вибрации двигателя до определенной степени субъективно и, как правило, довольно высокие уровни низкочастотных колебаний предпочтительнее менее интенсивного, но более раздражающего «дребезжания».

Однако если попытаться заставить такой двигатель работать при больших частотах вращения, его недостатки станут очевидными. Наличие массивных маховиков означает большое количество накопленной энергии или инерции, и ускорение, по сегодняшним меркам, будет ограничиваться медленным набором скорости. Маленький диаметр цилиндра и большой ход поршня означают высокие скорости линейного перемещения поршня, а следовательно, высокий уровень износа этих узлов. При попытке уменьшить ход поршня сглаживающий эффект больших маховиков теряется, а неуравновешенные силы увеличиваются. Это плохо сказывается на комфортабельности мотоцикла — покладистый одноцилиндровый двигатель превращает его в «дрель, передвигающуюся по дороге».

Другая проблема двигателей большого объема связана с затруднением запуска, даже если для этого применяется электрический стартер. Но, поскольку большинство одноцилиндровых двигателей большого объема используются для соревнований в условиях бездорожья и не оснащаются электрическим запуском, то каждый раз коленчатый вал приходится устанавливать в положение, когда он чуть не доходит до ВМТ на такте сжатия, затем давать ему здоровенный пинок, чтобы заставить его вращаться. Кроме того, есть проблема отдачи, которая проявляется, когда коленчатый вал установлен неправильно или когда на кик-стартер нажали недостаточно сильно. При этом усилия для того, чтобы поршень миновал такт сжатия, недостаточно, и он резко отскакивает назад из-за воздействия компрессии. При этом рычаг кик-стартера отпрыгивает назад и перекидывает вас через руль или ломает вам ногу. Некоторые одноцилиндровые двигатели оснащаются декомпрессором, предназначенным для облегчения запуска и уменьшения отдачи. Компания Honda разработала систему, в которой при нажатии на кик- стартер небольшой кулачок воздействует на выпускной клапан с целью немного приоткрыть его в ВМТ на такте сжатия. Это снижает усилие, необходимое для прокручивания коленчатого вала двигателя. Второй кулачок начинает работать, когда происходит отдача, также слегка приоткрывая выпускной клапан и снижая силу отдачи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector