Самый мощный двигатель в мире на автомобиле

F1

Жидкостный ракетный двигатель F1 разработан американской компанией Rocketdyne. Целью создания агрегата было обеспечение первой ступени ракеты Сатурн-5 механической силой. На 2008 год F1 — самый мощный двигатель из всех прошедших тестовый запуск ЖРД. Мощь агрегата составляет 190 000 000 лошадиных сил. В ракету Сатурн-5 установлено 5 таких двигателей. В качестве топлива в F1 использовался керосин, а роль окислителя выполнял кислород.

Изначально жидкостный ракетный двигатель создавался по запросу ВВС США. В дальнейшем страна отказалась от поддержки разработки F1 так как у нее не было данных, подтверждающих действенность применения такого большого двигателя.

Проектом заинтересовались в NASA, они заключили договор с  Rocketdyne о завершении разработки. F1 впервые испытали в марте 1959 года.

На сегодня ракета Сатурн-5, в которой установлено 5 двигателей F1, является самой мощной, тяжелой и большой из всех выходивших на орбиту. Летательный аппарат превосходит даже H-1, Space Shuttle и Falcon Heavy, является трехступенчатой.

8) AMC 4.08910

Этот мотор можно отнести к семейству двигателей, которые выпускались Американской автомобильной компанией (АМС). Двигатели устанавливались на легковых автомобилях АМС и на внедорожниках Jeep.

4,0-литровый двигатель устанавливался на следующие автомобили:

  • 1987-2001 Jeep Cherokee.
  • 1993-2004 Jeep Grand Cherokee.
  • 1987-1990 Jeep Wagoneer.
  • 1987-1992 Jeep Comanche.
  • 1991-2006 Jeep Wrangler.

Выпущенный впервые в 1964 году и претерпев множество доработок и модификаций, данный двигатель выпускался до 2006 года. Модификаций с объемом 4,0 литра было произведено более 5.000.000 млн. штук.

Вентильные реактивные электродвигатели

Вентильный реактивный двигатель (с английского SRM) создает вращающий момент за счет притягивания магнитных полей зубцов ротора к магнитному полю статора. Вентильные реактивные двигатели (ВРД) имеют относительно небольшое количество полюсов обмотки статора. Ротор имеет зубчатый профиль, что упрощает его конструкцию и улучшает создаваемое магнитное поле, в отличии от  реактивных синхронных машин. В отличии от синхронных реактивных двигателей (СРД), ВРД используют импульсное возбуждение постоянного тока, что требует обязательное наличие специального преобразователя для их работы.

Для поддержания магнитного поля в ВРД необходимы токи возбуждения, что уменьшает плотность мощности по сравнению с электрическими машинами с постоянными магнитами (ПМ). Однако они все же имеют габаритные размеры меньшие, чем обычные АД.

Основным преимуществом вентильных реактивных машин является то, что ослабления магнитного поля происходит естественным образом при снижении тока возбуждения. Это свойство дает им большое преимущество в диапазоне регулирования при скоростях выше номинальной (диапазон устойчивой работы может достигать 10:1). Высокая эффективность присутствует у таких машин при работе на высоких скоростях и с малыми нагрузками. Также ВРД способны обеспечить удивительно постоянную эффективность в довольно широком диапазоне регулирования.

Вентильные реактивные машины обладают также довольно хорошей отказоустойчивостью. Без постоянных магнитов эти машины не генерируют неуправляемый ток и момент при неисправностях, а независимость фаз ВРД позволяет им работать с уменьшенной нагрузкой, но с повышенными пульсациями момента при выходе из строя какой-то из фаз. Это свойство может быть полезно, если проектировщики хотят повышенной надежности разрабатываемой системы.

Простая конструкция ВРД делает его прочным и недорогим в изготовлении. При его сборке не используются дорогие материалы, а ротор из нелегированной стали отлично подходит для суровых климатических условий и высоких скоростей вращения.

ВРД имеет коэффициент мощности меньший, чем ПМ или АД, но его преобразователю не нужно создавать выходное напряжение синусоидальной формы для эффективной работы машины, соответственно такие инверторы имеют меньшие частоты коммутации. Как следствие – меньшие потери в инверторе.

Основными недостатками вентильных реактивных машин являются наличие акустических шумов и вибрации. Но с этими недостатками довольно хорошо борются путем более тщательного проектирования механической части машины, улучшения электронного управления, а также механическое объединение двигатель – рабочий орган.

ВРД хорошо подходят для широкого спектра применения и их все чаще используют для обработки сверхпрочных материалов из-за большой перегрузочной способности и большого диапазона регулирования скоростей. Большая перегрузочная способность делает их все более привлекательными для использования в качестве тяговых электроприводов современных электромобилей. Также ВРД получили широкое распространение и в электробытовой технике.  

1) Самый большой морской двигатель в мире Wärtsilä-Sulzer RTA96

Размеры: Объем – 25480 л., Длина – 26,59 м., Высота — 13,5 м., Вес – 2300 тонн.

Мощность: 107389 л.с.

Это самый большой двигатель в мире, когда-либо построенный человеком. Его вес составляет 2,3млн. килограмм (2300 тонн). Длина двигателя 89 футов (26,59 метров), высота 44 фута (13,5 метров).

Двигатели выпускаются от 6 до 14 цилиндров. Это турбированный двухтактный дизель, работающий на мазуте. Объем 14-ти цилиндрованного мотора составляет 25480 литров. Мощность 107389 л.с.

Расход топлива составляет 13000 литров в час (39 баррелей нефти в час!). Сила крутящего момента 7603850 Н.м. при 102 об/мин. Коленчатый вал весит 300 тонн.

Цилиндры и их количество

Чтобы понять грандиозность конструкции, можно представить себе, что диаметр одного только цилиндра составляет 960 миллиметров, а ход поршня — 2,5 метра. Что касается рабочего объема детали, то она имеет 1820 литров. Более 100 контейнеровозов оснащены такими агрегатами, на которых установлено от 8 до 20 цилиндров. Такие суда, способные перевозить груз до 10 000 тонн, спокойно могут развивать скорость выше 46 километров в час.

Впервые этот самый мощный двигатель в мире, имеющий 11 цилиндров, был сооружен в 1997 году. Компанией-изготовителем стала японская Diesel United. А через 5 лет в Финляндии объявили, что возможно произвести агрегат с 14 цилиндрами. Именно этот мотор и остается поныне рекордным.

Copperhead на Dodge SRT Viper

Компания Dodge, являющаяся подразделением Chrysler Corporation, выпускает самый мощный на сегодня бензиновый двигатель, которой устанавливают в легковые спортивные автомобили Dodge SRT Viper. Объем движка мотора равен 8,4 л, он способен разогнаться до 100 км/ч всего за 3 секунды, а мощность Copperhead на Dodge SRT Viper составляет 640 лошадиных сил.

Двигатель для автомобиля разработан на базе мотора Magnum V10. В изначальном виде он подходил для пикапа, но был чрезмерно громоздким для спорткара. Одним из главных решений, принятых Chrysler Corporation при перевыпуске двигателя, было заменить материал из блоков, выполненных из чугуна, на алюминий. Вес мотора составляет около 350 кг. Крутящий момент — 630 нанометров при 3600 оборотах в минуту.

Самый мощный двигатель в мире

Эта модель имеет 108 920 лошадиных сил. Рабочий объем генератора достигает 25 480 литров.

На первый взгляд, странной может показаться низкая литровая мощность: на 1 литр она составляет приблизительно 4,3 «лошадки». Если взять самый мощный двигатель в мире на автомобиле, то обнаружится, что в нем конструкторы научились получать намного выше 100 лошадиных сил. Но в случае с судовым агрегатом столь низкий показатель был выбран не просто так. Двигатель здесь работает не спеша — при максимальной мощности частота вращения вала равна всего 102 оборотам в минуту (для сравнения: на автомобильных дизелях наблюдается от 3000 до 5000 оборотов). Благодаря этому в судовом дизеле достигается хороший газообмен. А если к этому добавить еще и низкую скорость поршня, то получится весьма хороший коэффициент полезного действия.

При любом режиме удельный расход топлива варьируется от 118 до 126 грамм за «лошадь» в час. Это является более чем в два раза ниже, чем у легковых дизелей.

Сравнивая с автомобильными агрегатами, следует добавить, что на судах применяется тяжелое морское дизельное топливо, которое имеет в разы меньшее содержание энергии.

Итак, вес 14-цилиндрового агрегата составляет 2300 тонн без учета различных технических жидкостей. Один лишь коленчатый вал весит приблизительно 300 тонн. По длине этот лучший дизельный двигатель доходит до отметки 26,7 метра, а по высоте — до 13,2 метра.

Каждый цилиндр имеет огромный клапан. Еще 3 аналогичные детали небольшого размера, которые играют роль форсунок в автомобильных агрегатах, служат для впрыска топлива в цилиндр.

Клапан является выпускным. Выхлопные газы из него направляются в коллектор, а затем — к турбокомпрессорам. Последние гонят воздух к вырезанным внизу цилиндра окнам, которые открываются в момент нахождения поршня в нижней мертвой точке.

Усилие от поршня коленвалу передается при помощи крейцкопфного устройства, благодаря чему увеличивается эксплуатация дизеля.

Главными материалами, из которого изготовлены детали судового двигателя, являются все те же чугун и сталь.

Цилиндры и их количество

Чтобы понять грандиозность конструкции, можно представить себе, что диаметр одного только цилиндра составляет 960 миллиметров, а ход поршня — 2,5 метра. Что касается рабочего объема детали, то она имеет 1820 литров. Более 100 контейнеровозов оснащены такими агрегатами, на которых установлено от 8 до 20 цилиндров. Такие суда, способные перевозить груз до 10 000 тонн, спокойно могут развивать скорость выше 46 километров в час.

Впервые этот самый мощный двигатель в мире, имеющий 11 цилиндров, был сооружен в 1997 году. Компанией-изготовителем стала японская Diesel United. А через 5 лет в Финляндии объявили, что возможно произвести агрегат с 14 цилиндрами. Именно этот мотор и остается поныне рекордным.

Бензиновые L4

Отечественный потребитель в своём подавляющем большинстве предпочитает бензиновые агрегаты. Они и устроены проще, да и топливо зимой не замерзает, чего не скажешь о дизелях. Завидной популярностью пользуются решения поменьше – рядные «четвёрки».

Toyota 3S-FE

Открывает топ двигателей по надёжности агрегат от японского бренда серии S. Силовая установка отличается неприхотливостью и сравнительно небольшим расходом топлива. Классический вариант 3S-FE – это 2 литра, 4 цилиндра и 16 клапанов с отдачей от 128 до 140 лошадей.

Мотор сходил с конвейера начиная с 1986 года и вплоть до 2000. Более поздние турбированные модификации унаследовали большую часть былого ресурса. Лучшие двигатели от «Тойоты» получили автомобили серии RAV4, Celica, Camry и Avensis. Большинство экземпляров, выпущенных до 2000 года до сих пор не нуждаются в капитальном ремонте.

Mitsubishi 4G63

На втором месте рейтинга двигателей по надёжности расположилось семейство именитого бренда, выпускаемое с 1982 года. При этом лицензионные копии производятся до сих пор. На старте мотор выходил с одним распредвалом и тремя клапанами по формату SOHC, но позднее появились модификации DOHC – с двумя валами.

Один из самых надёжных двигателей в мире получили как машины бренда – Lancer Evolution IX, так и сторонние решения от Huyndai, Kia, а также Brilliance из Поднебесной. Начиная с 2006 года силовой агрегат подвергался модернизациям, прибавляя в ремонтопригодности и удобстве, но теряя в надёжности.

Honda D-Series

Серия состоит из дюжины разновидностей – от 1,2 до 1,7 литров. Силовые установки сходили с конвейера с 1984 до 2005 года. Самыми надёжными моторами считаются модификации D15 и D16. Оба решения могут похвастаться хорошими динамическими показателями: мощность агрегатов 131 л.с. при 7000 рабочих оборотах.

Двигателями серии D оснащали автомобили Civic, Accord, Integra, Stream и HR-V. Техника могла проехать без капитального вмешательства 500 000 км, а при должном уходе ещё больше. Современные решения бренда, выпушенные после 2005 года таких характеристик, увы, предложить не могут.

Opel 20ne

Закрывает топ самых надёжных двигателей формата L4 представитель автоконцерна Opel с серией 20ne семейства GM Family II. Силовой агрегат прославился тем, что легко переживает ходовую часть, кузов и прочие элементы автомобиля.

Надёжность мотора обеспечивается его простотой. Конструкция включает в себя классическую систему впрыска, распределительный вал на ремне и 8 клапанов в блоке. 2-литровый двигатель получил аналогичные соотношения хода поршня с диаметром цилиндра, что и лидер нашего рейтинга – 86 на 86 мм. При этом Toyota не раз обвиняла европейский концерн в плагиаторстве, но ничего доказать так и не смогла.

Серия изобилует модификациями, где мощность колеблется от 114 до 130 л.с. Силовая установка была поставлена на конвейер в 1987 году и стабильно выпускалась вплоть до 2000 года. Обладателями самых надёжных двигателей стали Opel Astra, Calibra, Kadett, Frontera и Vectra. Также не остался в стороне американский автопром. Качественной составляющей мотора заинтересовались Buick и Oldsmobile.

Впоследствии модернизированное решение – С20ХЕ оказалось под капотом машин Chevrolet и даже отечественной «Лады». Последняя участвовала в соревнованиях WTCC. Ранние и современные упрощённые модификации силовых установок легко разменивают 500 000 км пробега без визита на СТО.

Отдельные номинации

Однако привычные автомобильные бензиновые движки являются лишь частью огромной отрасли. При разговоре о двигателях нельзя не упоминать некоторых рекордсменов, которые является поистине уникальными произведениями.

Самый мощный дизельный двигатель — Wärtsilä-Sulzer RTA96C/RT-flex96C

Это одновременно самый большой двигатель в мире, работающий на дизельном топливе, и самый мощный представитель своего класса. Wärtsilä-Sulzer RTA96C/RTflex96C — серийное название движков, которые были созданы компанией из Финляндии. Существуют различные версии, от 6-цилиндровых до самых мощных 14-цилиндровых. Это самый крупный поршневой силовой агрегат, работающий на внутреннем сгорании. Предназначается агрегат для работы на огромных контейнеровозах вместимостью более 10 тысяч двадцатифутовых эквивалентных единиц. Перемещаются эти контейнеровозы, благодаря двигателю, со скоростью в двадцать пять узлов.

В высоту дизельный движок занимает 13 с половиной метров, в длину — двадцать семь. Весит этот «монстр» более двух тысяч тонн. Его мощность составляет целых 109 тысяч лошадиных сил.

Возможно, вам также будет интересно

Самые сложные условия эксплуатации для высоковольтных приводов переменного тока (MV) встречаются на платформах для поиска нефти/газа на глубоководном шельфе.

Современный бизнес, если он хочет оставаться успешным, вынужден непрерывно решать все новые и новые задачи в условиях ограниченных ресурсов. При этом, стремясь к сокращению издержек и оптимизации производства, компании не должны забывать о базовых принципах и новых тенденциях в системе охраны труда.

Компания Cisco опубликовала результаты исследования, проведенного в 13 странах, включая Россию: к настоящему времени лишь 5 процентам ИТ-руководителей удалось перенести в облако хотя бы половину своих приложений.

Все взаимосвязано

Ощущения при использовании горного электровелосипеда зависят не только от мотора, но и от конструкции самого велосипеда, в который он встроен. Различные модели велосипедов с полной подвеской имеют значительные различия в эффективности педалирования. Некоторые задние подвески заметно качаются, когда вы крутите педали, поглощая энергию вместо того, чтобы передавать ее на колеса. Иная кинематика подвески может предложить значительно лучшую эффективность. В результате, даже если у двух велосипедов один и тот же мотор, они не будут одинаковыми по ощущениям от использования.

Такие компоненты, как покрышки, колеса, трансмиссия и передаточные числа, также могут также сильно влиять на ощущение от двигателя. Из всех компонентов длина шатунов может оказать особенно заметное влияние. Мы рекомендуем длину шатунов 160 до 170 мм для езды по горной трассе.

Мы заметили самые большие различия в характеристиках моторов в случаях, когда производители велосипедов могут сами их настраивать. Brose, Yamaha и TQ предоставляют производителям велосипедов большую свободу в настройке количества режимов поддержки, мощности поддержки каждого из них и того, как помощь мотора срабатывает и прекращается. Некоторые производители велосипедов преуспели в этом гораздо лучше, чем другие. Например, Brose Drive S Mag в электровелосипедах FANTIC ощущаются намного естественнее, чем в электровелосипедах фирмы NOX. Настройки программного обеспечения производителя велосипедов оказывают большое влияние на работу двигателя.

Асинхронные электродвигатели

Асинхронные электрические машины смело можно назвать костяком современной промышленности. Благодаря своей простоте, относительно низкой стоимости, минимальным затратам на обслуживание, а также возможности работать напрямую от промышленных сетей переменного тока, они прочно въелись в современные производственные процессы.

Сегодня существует множество различных преобразователей частоты с самыми различными алгоритмами управления, которые позволяют регулировать скорость и момент асинхронной машины в большом диапазоне с хорошей точностью. Все эти свойства позволили асинхронной машине значительно потеснить с рынка традиционные коллекторные двигатели. Вот почему регулируемые асинхронные электродвигатели (АД) легко встретить в самых различных устройствах и механизмах, таких как тяговый асинхронный электропривод, электроприводы стиральных машин, вентиляторов, компрессоров, воздуходувок, кранов, лифтов и многом другом электрооборудовании.

АД создает вращающий момент за счет взаимодействия тока статора с индуцированным током ротора. Но токи ротора нагревают его, что приводит к нагреванию подшипников и снижению их срока службы. Замена традиционной алюминиевой обмотки на медную не устраняет проблему, а приводит к удорожанию электрической машины и может накладывать ограничения на прямой ее пуск.

Статор асинхронной машины имеет довольно большую постоянную времени, что негативно сказывается на реагировании системы управления при изменении скорости или нагрузки. К сожалению, потери связанные с намагничиванием  не зависят от нагрузки машины, что снижает КПД АД при работе с малыми нагрузками. Автоматическое уменьшение потока статора возможно использовать для решения данной проблемы — для этого необходим быстрый отклик системы управления на изменения нагрузки, но как показывает практика, такая коррекция не существенно увеличивает КПД.

На скоростях превышающих номинальную поле статора ослабевает из-за ограниченного напряжения питания. Вращающий момент начинает падать, так как для его поддержания будет требоваться больший ток ротора. Следовательно, управляемые АД ограничиваются диапазоном скорости для поддержания постоянной мощности примерно 2:1.

Механизмы, которые требуют более широкого диапазона регулирования, такие как: станки с ЧПУ, тяговый электропривод, могут снабжаться асинхронными электродвигателями специального исполнения, где для увеличения диапазона регулирования могут уменьшать количество витков обмотки, снижая при этом значения крутящего момента на низких скоростях. Также возможен вариант с использованием более высоких токов статора, что требует установки более дорогих и менее эффективных инверторов.

Немаловажным фактором при работе АД является качество питающего напряжения, ведь максимальный КПД электродвигатель имеет при синусоидальной форме питающего напряжения. В реальности преобразователь частоты обеспечивает импульсное напряжение и ток, похожий на синусоидальный. Проектировщикам стоит иметь ввиду, что КПД системы ПЧ-АД будет меньше, чем сумма КПД преобразователя и двигателя в отдельности. Улучшения качества выходного тока и напряжения повышают увеличением несущей частоты преобразователя, это приводит к снижению потерь в двигателе, но при этом возрастают потери в самом инверторе. Одним из популярных решений, особенно для промышленных мощных электроприводов, является установка фильтров между преобразователем частоты и асинхронной машиной. Однако это приводит к увеличению стоимости, габаритов установки, а также к дополнительным потерям мощности.

Еще одним недостатком асинхронных машин переменного тока является то, что их обмотки распределены на протяжении многих пазов в сердечнике статора. Это приводит к появлению длинных концевых поворотов, которые увеличивают габариты и потери энергии в машине. Эти вопросы исключены в стандартах IE4 или классах IE4. В настоящее время европейский стандарт (IEC60034) специально исключает любые двигатели, требующие электронного управления.

Второе место — V8 SSC Tuatara

SSC Tuatara имеет мощный двигатель V8, который оснащен двойным турбонаддувом. Мощность двигателя составляет около 1 350 лошадиных сил, он совершает 6 800 оборотов за одну минуту. Двигатель весит почти 200 килограмм. Он работает вместе с семиступенчатой коробкой передач, которая позволяет выжать из него все возможности. Примечательно, что автомобиль SSC Tuatara не единичная модель. Планируется серийное производство, однако на сегодняшний день оно откладывается. Впервые машина была представлена на шанхайской автомобильной выставке, где произвела огромное впечатление на любителей скоростной езды.

Третье место -W16 — Bugatti Veyron 16.4 Super Sport

Суперспортивная версия Бугатти Верон — одна из самых быстрых машин в мире. Максимальная скорость, которую может развивать автомобиль — около 400 километров в час. Разгон до ста километров в час осуществляется за две с половиной секунды. Отличные скоростные характеристики обеспечивает двигатель W16, который прошел специальную модернизацию. Объем движка — 16.4 литра. Движок способен развивать около 1200 лошадиных сил. Двигатель совершает 6 тысяч оборотов в минуту, его максимальный крутящий момент равен 1 500 ньютонов на метр. Мотор работает в паре с семиступенчатой коробкой передач, которая позволяет машине развивать максимальную скорость передвижения.

3) Ford EcoBoost V6

Перед вами друзья семейство современных двигателей с прямым впрыском топлива от компании «Форд». Его технология позволяет, не смотря на экономичность, использовать достаточно больший объем двигателя без использования турбины (не на всех модификациях), благодаря чему достигается увеличение мощности на 15 — 20%. 

Двигатель 1,6 л EcoBoost I-4 используется:

100 л.с. 

  • 2012 — Ford Focus.
  • 2012 — Ford C-Max.
  • 2012 — Ford B-Max.
  • 2013 — Ford Fiesta.

125 л.с.

  • 2012 — Ford Focus.
  • 2012 — Ford C-Max.
  • 2012 — Ford B-Max.
  • 2013 — Ford Fiesta.
  • 2013 — Ford Ecosport.
  • 2013 — Ford Mondeo.

150 л.с. 

  • 2010 — Ford C-MAX.
  • 2010 — Ford Focus.
  • 2010 — Volvo S60.
  • 2010 — Volvo V60.
  • 2012 — Volvo V40.

160 л.с. 

  • 2011 — Ford Mondeo.
  • 2011 — Ford S-Max.
  • 2011 — Ford Galaxy.

185 л.с.

  • 2010 — Ford C-MAX.
  • 2013 — Ford Fusion.
  • 2010 — Volvo S60.
  • 2010 — Volvo V60.
  • 2011 — Ford Focus.
  • 2011 — Volvo V70.
  • 2011 — Volvo S80.
  • 2012 — Volvo V40.
  • 2013 — Ford Escape.
  • 2013 — Ford Fiesta ST (Европа).

200 л.с.

2014 — Ford Fiesta ST.

2,0 л EcoBoost I-4 используется:

203 л.с.

  • 2010 — Ford S-MAX.
  • 2010 — Ford Galaxy.
  • 2010 — Ford Mondeo.
  • 2010-2011 Volvo S60 2.0T.
  • 2010-2011 Volvo V60 2.0T.

243 л.с. 

  • 2010 — Ford Mondeo. 
  • 2011 — Ford Explorer.
  • 2011 — Ford Edge.
  • 2011 — Land Rover Range Rover Evoque. 
  • 2011 — Ford S-MAX.
  • 2012 — Ford Falcon. 
  • 2013 — Ford Escape.
  • 2013 — Land Rover Freelander 2.
  • 2013 — Ford Fusion.
  • 2013 — Ford Taurus. 
  • 2013 — Jaguar XF.
  • 2013 — Jaguar XJ.

255 л.с. 

2013 — Ford Focus ST.

1) Самый большой морской двигатель в мире Wärtsilä-Sulzer RTA96

Размеры: Объем – 25480 л., Длина – 26,59 м., Высота — 13,5 м., Вес – 2300 тонн.

Мощность: 107389 л.с.

Это самый большой двигатель в мире, когда-либо построенный человеком. Его вес составляет 2,3млн. килограмм (2300 тонн). Длина двигателя 89 футов (26,59 метров), высота 44 фута (13,5 метров).

Двигатели выпускаются от 6 до 14 цилиндров. Это турбированный двухтактный дизель, работающий на мазуте. Объем 14-ти цилиндрованного мотора составляет 25480 литров. Мощность 107389 л.с.

Расход топлива составляет 13000 литров в час (39 баррелей нефти в час!). Сила крутящего момента 7603850 Н.м. при 102 об/мин. Коленчатый вал весит 300 тонн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector