Как на схемах электрических цепей изображают реостат

Содержание

Ток в обмотке якоря определяется разностью напряжения на зажимах двигателя и противоэлектродвижущей силы U — Е : чем меньше эта разность, тем меньше ток в цепи якоря; с увеличением скорости вращения ротора двигателя растет и противоэлектродвижущая сила, поэтому разность U — Е уменьшается.
То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Для уменьшения износа витков ползунок имеет скользящий контакт, часто выполняемый из графитного стержня либо колесика.
Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла.
Устройство ползункового реостата Реостат имеет возможность работать в режиме потенциометра. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети.
Подключение возможно с помощью клемм, размещенных с обеих сторон трубки. В гидромеханизации, как и на многих других установках, до сего времени эксплуатируются выпускавшиеся ранее, а в настоящее время прекращенные производством маслонаполненные ящики резисторов сопротивлений типа ЯПМ и ящики с чугунными элементами типа ЯС. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала. Тороидальный вид Реостат в виде тора меняет сопротивления практически не создавая разрыва в цепи.

Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Подключение возможно с помощью клемм, размещенных с обеих сторон трубки. В металлах носителями заряда являются свободные электроны, в электролитах — анионы и катионы, а в ионизированных газах — электроны и ионы.

Отличительной особенностью является изменение параметров сети без разрыва цепи. Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления.

Благодаря этому получается добиться снижения скачков электрического тока и динамических перегрузок, способных повредить как сам привод, так и подключенный к нему механизм. Такими материалами являются нихром сплав никеля и хрома , фехраль сплав железа, хрома и алюминия , константан сплав меди и никеля и другие. Резисторы обычно изготовляют из проволоки или ленты, материалом для которых служат сплавы металлов, обладающие высоким удельным сопротивлением константан, никелин, манганин, фехраль. Устройство ползункового реостата Реостат имеет возможность работать в режиме потенциометра.
️Как сделать простой регулятор мощности — оборотов. «ШИМ регулятор» Simple PWM ️

Подстроечный резистор.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно ), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Из-за небольшой износоустойчивости не рекомендуется применять подстроечные резисторы вместо переменных – в цепях, в которых регулировка сопротивления будет производиться довольно часто.

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат – это разные схемы включения (!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата – все зависит от схемы включения. Начнем с реостата.

Популярные решебники

Проволока проходит через несколько контактов.
То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.
Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть В.
Если изменять сопротивление проводника R, тогда будет меняться сила тока. Такой реостат состоит из изоляционной трубки 4, на которую навита проволочная спираль 5. Изобретён реостат был немецким физиком Иоганном Христианом Поггендорфом в г. Несмотря на выпуск многих разновидностей, принцип функционирования у всех приборов примерно одинаковый.
Почему так? Весьма удобно изменять длину проводника. Как тогда это сделать? Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь.


Масляные Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС.

Для пуска и регулирования электрических двигателей станков, грузоподъемных механизмов и пр. В предыдущей статье мы подробно рассмотрели что такое потенциометр. Включение лампочки от карманного фонаря в сеть В

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них

На помощь придет уже известный нам прибор — реостат. Очевидно, что при таком включении к приемнику будет подаваться напряжение U, равное падению напряжения между зажимом 4 и подвижным контактом 3 реостата. Напряжение U представляет собой только часть напряжения Uи на зажимах источника.
На рисунке изображена схема электрической цепи, содержащей резистор сопротивлением…

Упражнение 1. Реостат

Р
ассмотрим
электрическую цепь (рис.5), в которой
реостат работает как регулятор тока
(собственно реостат). В этом случае
реостат включается в цепь последовательно.
Если внутреннее сопротивление вольтметра
очень велико, а амперметра мало по
сравнению с сопротивлением нагрузки,
ток в цепи будет таким:

,
(1)

где R
– сопротивление всего реостата,

Rl
– сопротивление действующего участка
AD реостата длиной l,

RH
– сопротивление
нагрузки,

r
внутреннее сопротивление источника
тока, Е – ЭДС источника тока.

При
перемещении движка реостата D
от А к В сопротивление Rl
будет изменяться от нуля до наибольшего
R, а ток в цепи –

от наибольшего

до наименьшего

значения.

Найдем
так называемую кратность регулирования
тока K, которая, по
определению, есть отношение наибольшего
тока к наименьшему из их диапазона его
изменения:

.
(2)

Из
формулы (2) видно, что пределы регулирования
тока реостата тем больше, чем больше
отношение R/(RH+r),
т.е. чем больше сопротивление реостата
по сравнению с сопротивлением нагрузки
(внутреннее сопротивление источника
тока r, как правило,
значительно меньше RH).

Если
в электрическую цепь включен регулирующий
элемент (реостат), то хочется, чтобы
пределы регулирования тока были как
можно больше. Однако возможность
получения больших K
для реостата ограничена. Чем больше
сопротивление реостата, тем меньше его
допустимый (номинальный) рабочий ток.
Включив такой реостат в цепь с мощным
источником тока, можно сжечь обмотку
реостата. В самом деле, если его движок
D находится вблизи
клеммы А, сила тока в цепи определяется,
в основном, величиной сопротивления
нагрузки и если этот ток окажется больше
номинального тока реостата, то последний
будет испорчен. Кроме того, в случае
RRH
при приближении движка D
к клемме А скачки изменение тока
становятся всё бóльшими. Итак, при выборе
реостата приходится учитывать и выполнять
два условия: 1)сопротивление реостата
должно быть больше сопротивления
нагрузки RRH,
2) наибольший ток нагрузки не должен
превышать номинальный (допустимый для
нормальной работы) ток реостата IнбIном.

Описание
установки.
Все приборы, необходимые
для проведения измерений, размещены на
лабораторной панели: 1)реостат с линейкой
(сопротивление R=1200
Ом, номинальный ток 0,5 А), 2)два вольтметра
с пределами измерения 15 В, 3)два
миллиамперметра с пределами 75 мА и 1,5
мА. Два резистора, выполняющие роль
нагрузки, размещены в подвале панели.

Измерения.
Работа реостата в качестве регулятора
тока изучается при двух нагрузках:
1)RH1=120
Ом (условие RHR),
2) RH2=12000
Ом (RHR).

В первом
случае последовательно с нагрузкой
включается миллиамперметр на 75 мА, во
втором – на 1,5 мА.

1.Соберите
цепь с нагрузкой RH1=120
Ом согласно схеме (рис.5). Тумблер Вк
во время сборки должен быть в разомкнутом
положении. Постоянное напряжение от
лабораторной сети подведено к клеммам
с обозначением 6
В.

2.Предложите
преподавателю проверить правильность
сборки цепи.

3.Внимание!
Прежде чем включить тумблер Вк,
установите на реостате наибольшее
сопротивление (движок D
перемещен к клемме В). 4.Включите
напряжение питания тумблером Вк.
Перемещая движок реостата в сторону
уменьшения сопротивления, снимите
зависимость напряжения на входе U,
напряжения на нагрузке UH
итока в цепи I (он
же ток нагрузки) от расстояния l
между движком реостата D
и клеммой А, отсчитывая его по
линейке

Такие измерения следует провести
от 42 см до нуля примерно через равные
промежутки 4…5 см. Результаты запишите
в табл.1

4.Включите
напряжение питания тумблером Вк.
Перемещая движок реостата в сторону
уменьшения сопротивления, снимите
зависимость напряжения на входе U,
напряжения на нагрузке UH
итока в цепи I (он
же ток нагрузки) от расстояния l
между движком реостата D
и клеммой А, отсчитывая его по
линейке. Такие измерения следует провести
от 42 см до нуля примерно через равные
промежутки 4…5 см. Результаты запишите
в табл.1.

5.Проведите
такие же измерения со второй нагрузкой
RH2=12000
Ом.

Таблица 1

Нагрузка
120 Ом

Нагрузка
12000 Ом

l

I

UH

U

l

I

UH

U

Обработка
результатов.
1.По данным табл.1 постройте
отдельно для каждой нагрузки графики
зависимости тока I и обоих напряжений Uи UHот длины рабочего участка реостата
l.

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным. Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные

Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

Переменный резистор

Очень часто возникает необходимость изменять величину тока и напряжения при помощи изменения номинала резистора. Выполнить эту задачу поможет простой радиоэлемент, который называется реостатом. Он широко применяется для регулировки уровня громкости, увеличения напряжения на лабораторном источнике питания и т. д. Переменные резисторы, применяемые в радиотехнике, отличаются от лабораторных конструкциий. Однако принцип действия этих радиоэлементов одинаков. Части устройства очень похожи по своему предназначению. Например, ползунковый механизм, который применяется для регулировки тока.

Виды и устройство реостатов

Реостаты классифицируются по устройству и способу применения. По устройству реостаты делятся на 4 типа: проволочный, ползунковый, жидкостный и ламповый. Первый тип переменного резистора состоит из проволоки (материала с высоким удельным сопротивлением) и корпуса-изолятора. Проволочный проводник проходит через контакты, при соединении с которыми можно получить необходимую величину сопротивления.

Ползунковый реостат состоит тоже из проволоки с высоким удельным сопротивлением, корпуса-диэлектрика (на него она намотана) и ползунка. При передвижении ползунка происходит уменьшение или увеличение величины электросопротивления. Устройство применяется в лабораториях при проектировании различных электрических приборов, а также для проведения опытов в области физики или химии. Кроме того, модернизированная версия применяется в различной радиоаппаратуре.

Не слишком распространенным типом является модель жидкостного переменного резистора. Она имеет следующее строение: бак с электролитическим раствором и подвижные электроды.

Реостат бывает еще и ламповым. Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Если изменить количество включенных ламп, то можно изменить его сопротивление. Однако устройство имеет один существенный недостаток: зависимость величины электрической проводимости от температуры нитей накаливания. По способу применения переменные резисторы следует классифицировать таким образом:

  • пусковые;
  • пускорегулирующие;
  • балластные;
  • для возбуждения;
  • потенциометры.

Первый тип предназначен для плавного запуска электродвигателей. Пускорегулирующие переменные резисторы позволяют плавно запускать электрические двигатели постоянного тока, а также поддерживают регулировку величины силы тока. Балластные следует применять в электрических цепях для регулировки нагрузочной способности генератора электроэнергии. Они создают необходимую величину сопротивления в сети. Реостаты возбуждения используют в электрических машинах для поглощения лишней энергии.

Потенциометр предназначен для регулировки величины напряжения. Реостат устроен следующим образом: три клеммы позволяют получить от источника питания с фиксированным значением напряжения разные значения его величины. Например, понижающий трансформатор со значением напряжения на вторичной обмотке, равным 36 В. При использовании 2 транзисторов, диодного моста и реостата можно получить ряд напряжений от 0 до 34 В (2 В — потери при выпрямлении диодным мостом). Эта особенность позволяет делать и выпускать универсальные делители напряжения.

Схема и принцип работы

Обозначение реостата на схеме осуществляется в виде обыкновенного резистора, но со стрелкой, показывающей непостоянное значения сопротивления радиокомпонента. Принцип работы реостата довольно простой и основан на зависимости величины силы тока от величины сопротивления. Проводник, который находится на корпусе-изоляторе, подключен в электрическую цепь.

Реостат может выглядеть, как корпус-изолятор, из которого выведен специальный регулятор величины сопротивления. Однако некоторые модели, которые применяются в лабораториях, могут быть открытого типа. Они предназначены для демонстрации принципа действия устройства.

Электроток протекает по пути наименьшего сопротивления. Следовательно, ползунком можно регулировать протекание тока. Если проводник (материал с высоким удельным сопротивлением) задействован полностью, то, значит, и величина сопротивления будет максимальной. В случае, когда ползунок находится посередине проводника, сопротивление реостата равно R / 2. Подключение в электрическую цепь потенциометра, как и любого типа реостата, осуществляется последовательно.

Масляное охлаждение

Металлические реостаты с масляным типом охлаждения увеличивают теплоемкость и время нагрева из-за хорошей проводимости тепла маслом. Это дает возможность увеличивать нагрузку при кратковременном режиме и сокращать расход материала резисторов и размеры самого реостата.

Элементы, которые погружаются в масло, должны обладать большой поверхностью для обеспечения хорошей теплоотдачи. Если резистор закрытого типа, то нет смысла погружать его в масло. Само погружение дает защиту контактам и резисторам от воздействия окружающих факторов. В масле отключающие способности контактов повышаются. Это достоинство реостатов такого типа. Благодаря смазке возможны большие нажатия на контакты. Но есть и недостатки. Это повышение риска опасности пожара и загрязнение помещения.

Реостат можно включать в схему в качестве переменного резистора или же потенциометра. Это обеспечивает плавную регулировку сопротивления и, как следствие, регулирование силы тока и напряжения в цепи. Их часто применяют в лабораториях.

реостат для самодельного сварочника

Я делал себе из кранового сопротивления в виде удобного балластничка с медным ножом (нихромовая «пружина «).Сделал аккуратную подставочку из полосы ,толщиной 1,5- 2 мм и шириной 25-30 мм .Ширина подставочки должна быть такой ,чтобы отверстия крепления кранового сопротивления ложились на перемычки подставки и его можно было прикрутить.Высота подставки должна быть такой , чтоб пружина была от пола сантиметров пять ,не меньше.По краям подставки из той же полосы приварил ушки с отверстиями,чтоб они были повыше пружины.Взял пруток ,диаметром 8 мм ,нарезал по краям резьбу ,и затем натянул на него кембрик по всей длине, не закрывая резьбу,чтоб «нож»,при помощи которого нужно будет регулировать сварочный ток,был изолирован от подставки . Изготовление «ножа «.Брал полосу ,из которой делал подставку ,длиной сантиметров двадцать ,приклепывал к ней такую же полосу ,но медную.Затем сверлил по краям два отверстия на 10 — в одно отверстие вставляется изолированный пруток на 8,по которому и перемещается «нож» (пруток крепится в ушках ),во-второе ,со стороны металлической пластины вставляется болт на 10 и приваривается (длина болта 40мм ).На болт затем одевается и прикручивается клема кабеля электрододержателя.Затем брал эту металл-медную пластину и такую же по ширине , но сантиметра на четыре больше диаметра пружины , медную, прикладывал одну к другой и сверлил в них отверстия на» 6″ под болт на «6».(У медных пластиночек немножко отгибаются кромки мм по 4 ,чтобы лучше входили витки пружины ).Вставляем болтики на «6» ,длиной около 40 мм ,на них одеваем пружинки ,на пружинки сверху шайбочки и прикручиваем гайками .Но так , чтобы потом «нож» сидел плотно на витке пружины.Обычно на пружинах есть припаянные латунью медные ушки .К одному из ушек крепим кабель (клемы на обоих концах) 50см ,второй конец потом крепится к болту на сварочнике.Вот и все. …Ага ,чуть не забыл. Чтоб не крепить кабеля и балластник гайками , постоянно таская с собой ключь ,сделал еще барашки .А барашки взял с «КРАЗовского » мотора-есть там такие (прошу прощения ,я не водитель , так что не знаю как правильно и выразиться ,но я думаю вы поймете о чем речь).Резьба в них мелкая на 10.Поэтому я брал сверло ,аккуратно зажимал в тиски,так как пластмасса хрупкая и может треснуть,засверливал поглубже ,но так чтоб сверло не вышло наружу.Это делалось для того, чтобы хватило хода для метчика на «10» .Перерезал резьбу под болт ,и получались удобные барашки.Три штучки их надо.Вот теперь все.

ФИЗИКА

§ 47. Реостаты

На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например никелиновая или нихромовая. Включив такую проволоку в цепь источника электрического тока через контакты А и С последовательно с амперметром (рис. 75) и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней.

Рис. 75. Изменение длины проводника, включённого в цепь

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображён на рисунке 76, а, а его условное обозначение в схемах — на рисунке 76, б. В этом реостате стальная проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце клемму 1. С помощью этой клеммы и клеммы 2, соединённой с одним из концов обмотки и расположенной на корпусе реостата, реостат подсоединяют в цепь.

Рис. 76. Внешний вид и обозначение реостата на схеме

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.

Каждый реостат рассчитан на определённое сопротивление и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате.

Рис. 77. Реостат, с помощью которого можно менять сопротивление в цепи

Чтобы лучше понять устройство и действие реостата, покажите на рисунке 76 путь тока по нему, если клеммы 1 и 2 включены в цепь.

Вопросы

  1. Для чего предназначен реостат?
  2. Объясните по рисунку 76, а, как устроен ползунковый реостат. Как можно включать его в цепь?
  3. Почему в реостатах используют проволоку с большим удельным сопротивлением?
  4. Для каких величин указывают на реостате их допустимые значения? В Как на схемах электрических цепей изображают реостат?

Упражнение 31

  1. На рисунке 77 изображён реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками. Рассмотрите рисунок и по нему опишите, как действует такой реостат.
  2. Если каждая спираль реостата (см. рис. 77) имеет сопротивление 3 Ом, то какое сопротивление будет введено в цепь при положении переключателя, изображённом на рисунке? Куда надо поставить переключатель, чтобы с помощью этого реостата увеличить сопротивление цепи ещё на 18 Ом?
  3. В цепь включены: источник тока, ключ, электрическая лампа и ползунковый реостат. Нарисуйте в тетради схему этой цепи. Куда надо передвинуть ползунок реостата, чтобы лампа светилась ярче?
  4. Требуется изготовить реостат на 20 Ом из никелиновой проволоки площадью сечения 3 мм2. Какой длины проволока потребуется для этого?

Как правильно называется болгарка инструмент

Для начала давайте разберемся о том, что такое «болгарка». Название «болгарка» очень сильно привязалось к этому инструменту. На профессиональном языке этот инструмент называется — углошлифовальная машина (УШМ). Но исторически сложилось, что этот инструмент начали впервые собирать в Болгарии, поэтому за УШМ прикрепилось название «болгарка»

Для чего нужна болгарка?

Болгарка или УШМ, выполняет простой функционал — шлифовка. Но многие умельцы используют ушм не только для шлифовки, но еще и для работ по бетону, металлу и даже по дереву. Но создан этот инструмент изначально только для шлифовки, однако, современная болгарка может с легкостью производить резку, полировку и чистку материалов.

При этом , шлифовку и чистку можно выполнять практически с любым материалом, который попадется под руку. Для этого используют различные насадки, которые подходят каждый для своего типа материала. УШМ можно обрабатывать: цемент, бетон, шифер, кирпич, стекло, фарфор, дерево и даже пластик.

Самой главный плюс этого инструмента в том, что он практически универсален, вам нужно только менять насадки.

Первый критерий — размер используемого диска

Самый важный и первый критерий, с которым нужно определиться при покупке болгарки , это размер используемого диска. На данный момент, самый минимальный размер отрезного диска 0 115 мм, а максимально возможный размер — 230 мм.

Только, заметим, что не вся часть имеет возможность резать, а лишь выступающая за корпус углошлифальной машины. Это значит, что если корпус имеет ширину минимум 55 мм, то около половины диска на 115 мм (даже меньше) может что-то разрезать. Говоря проще, болгарка на 115 мм может разрезать доску не толще 30 мм (а на практике максимум 25 мм). При этом все диски имеют свойство стачиваться, то есть, за минуту работы эта цифра может снизиться в два раза. Основываясь на это, можно уже подумать о размерах диска.

Ведь для резки металлических труб диаметром 20 и более миллиметров болгарка на 115 мм уже станет неуместной из-за низкой износостойкости. И если покупать под резку труб углошлифовальную машину, то минимум на 180 мм. И это лишь для резки, а если надо инструмент для шлифовки? Тут уже не стоит брать больше, вполне достаточно будет выбрать инструмент и на 125 мм, что является и нормой для большинства шлифовальных насадок.

Как заметили, выбрать не так просто, нужно вначале подумать, для чего нужен инструмент, и уже тогда начинать его подбор.

Охарактеризуем типы УШМ на основе размеров, чтобы можно было легче понять, что нам лучше подойдет.

УШМ на 115 мм

Это самый минимальный размер пильного круга, который можно приобрести. Он подходит для самых простых работ, и зачастую, круги такого диаметра, используют исключительно для шлифовки, так как , чем меньше размер, тем меньше вес. Это самый оптимальный вариант для мелких работ.

УШМ на 125 мм

Это следующий по размеру тип и на данный момент он является самым ходовым среди нашего населения

Болгарки такого размера не тяжелые, но очень удобные и имеют приличные характеристики по мощности, и что немаловажно, все еще имеют низкую стоимость. Этой болгаркой можно как шлифовать материал, так и резать

Само собой, слишком толстые детали такая болгарка не осилит, так как глубина проникновения полотна намного меньше радиуса, но для домашних бытовых работ эта болгарка подходит в самый раз.

УШМ на 150 мм

Этот тип болгарок не очень популярен в быту, но иногда пользуется спросом. Эта болгарка несколько мощнее предыдущих и позволяет уже выполнять более объемные работы.

УШМ на 230 мм

Это максимум, который можно купить, по диаметру круга. Самый главный плюс такой болгарки, само собой в большом круге. Таким инструментом можно, без особых усилий резать кирпич, плитку, доски и даже трубы, но для шлифовки такую болгарку лучше не использовать. Во-первых у нее очень большой вес, что крайне не удобно при шлифовке материала, во вторых, большой круг будет мешать вам подобраться к узким местам шлифовки. Такую болгарку надо покупать только в том случае если вы запланировали большой ремонт или масштабное строительство. Для мелких работ эта болгарка не подходит

Как измерить сопротивление резистора

Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.

Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.

измерение сопротивления

Резистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.

Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.

формула сопротивления через закон Ома

Поэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!

Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной – это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула

Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.

лампа накаливания потребление тока

Итак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу  0,71 Ампер.

Получаем, что сопротивление раскаленной нити лампы в данном случае составляет

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector