Что такое двигатель и какой его принцип работы?

Устройство поршневого двигателя автомобиля

Наиболее простой двигатель внутреннего сгорания имеет рядное расположение цилиндров. В современных моторах их от 3 до 6. Более компактный автомобильный двигатель имеет V-образную форму, то есть поршни расположены под углом напротив друг друга.

Цилиндров у V-образного двигателя может быть 4, 6, 8, 10 и 12. Также существуют рядно разнесенные моторы VR и W, их конструкция сложна, поэтому устройство мотора лучше изучить на рядной «четверке».

Основа двигателя – блок цилиндров. В этих цилиндрах двигаются поршни. Внизу блока крепится коленвал на подшипниках трения (вкладышах), к нему присоединен шатун, а к шатуну – поршень.

Такой узел называется кривошипно-шатунным. Поскольку коленчатый вал имеет, соответственно названию, форму колена, без шатуна невозможно было бы обеспечить возвратно-поступательные движения поршня.

Конструкция шатуна выполнена так, что его нижняя часть делает колебательные движения, а верхняя часть, соединенная с поршнем, не движется в боковом направлении.

Поршень двигателя имеет три кольца: два компрессионных и одно маслосъемное. О предназначении колец говорит само название: компрессионные обеспечивают давление в цилиндре, не допустив прорыва газов в картер, а маслосъемные кольца снимают масло со стенок цилиндра и сбрасывают его в масляный картер.

К коленчатому валу с передней стороны соединен шкив для обеспечения работы навесного оборудования через ремень, а также работы ГРМ, если тип привода ременной. Если ГРМ цепного типа, то на коленвале установлена звезда. Дополнительная звезда на коленчатом валу может быть установлена, если привод маслонасоса цепной.

С задней стороны к коленвалу устанавливается маховик. Маховик аккумулирует механическую энергию, и через трансмиссию передает ее на ведущие колеса. На маховике установлены зубцы для соединения со стартером.

Сверху цилиндры герметично накрыты головкой блока цилиндров, между которыми установлена металлическая прокладка. Камера сгорания находится как раз в ГБЦ, и может быть сферической или полусферической формы, а в дизельных моторах камера сгорания находится в выемке поршня.

В конструкции классической ГБЦ есть:

  • распределительный вал (один или два),
  • клапана впускные и выпускные, приводящиеся в движение от кулачка распредвала.

За возврат клапана в исходное место отвечает пружина, которая накрывается тарелкой, и фиксируется «сухарями».

Привод ГРМ, чаще всего цепной или ременной. Для цепного привода требуются пластиковые успокоители и натяжитель механического или гидравлического типа. Ременной привод ГРМ простой конструкции включает в себя ремень, обводной ролик и натяжитель.

Причины износа поршней двигателя

Трещины на головках поршней и на поршневых кольцах из-за термического износа являются обычной проблемой. Развитие автомобильной промышленности в последние годы привело к тому, что эффективность поршней и поршневых колец в двигателях внутреннего сгорания зависит в первую очередь от долговечности используемых материалов. Условия эксплуатации привода также являются важным фактором. Вероятность отказа двигателя увеличивается с усилением тепловых нагрузок, связанных с ростом производительности (например, за счет увеличения степени сжатия, номинальной мощности, наддува или из-за использования более двух клапанов на цилиндр).

Конструкционные и эксплуатационные факторы влияют на деградацию материала, используемого в поршнях. В зависимости от перечисленных факторов можно указать следующие виды износа:

  • износ из-за трения,
  • износ, вызванный повреждением материала (действие переменных механических и термических нагрузок),
  • процесс коррозии (изменение физико-химических свойств верхнего слоя материала),
  • эрозионный (в результате динамического воздействия газообразной или жидкой среды).

Очень часто трещины вызывают зазубрины, образованные краями углублений клапана. Такие повреждения могут привести, в частности, к нарушениям в процессе горения топливно-газовой смеси или к снижению герметичности камеры.

В двигателях с форкамерным впрыском наиболее распространенным дефектом является растрескивание головки поршня.

Температура на краю поршня в зоне камеры сгорания может быть чуть более 380°C . В случае контакта с жидкостью создаются экстремальные условия, которые могут вызвать трещины или необратимую деформацию поршня. Такое повреждение днища может быть причиной, например, попадания воды или топлива в камеру сгорания.

Еще одна причина повреждения поршня — его тепловая перегрузка. Она может произойти, если масло меняют слишком редко (в автомобилях с двигателем с воспламенением от сжатия его следует менять примерно раз в год; в автомобилях с двигателем с искровым зажиганием — примерно каждые 1,5 года). Это также может привести к засорению форсунок охлаждения моторного масла.

От 40 до 50% механических потерь в двигателе внутреннего сгорания — это потери из-за трения колец и поршня о поверхность подшипника цилиндра. По этой причине размеры поверхности трения колец уменьшаются (при неизменном давлении). Это приводит к снижению эластичности поршневых колец, что может вызвать разрушение из-за тяжелых условий эксплуатации. Растрескивание поршневых колец также может быть следствием:

  • трибологического износа;
  • механических перегрузок, которые возникают из-за нарушения процесса сгорания, ошибок сборки или из-за больших нагрузок при запуске холодного двигателя.

Трибологический износ — это вид износа, возникающий в результате процессов трения. Процессы изнашивания изменяют массу, структуру и физические свойства поверхностных слоев контактных площадок. Интенсивность износа является следствием различных взаимодействий и сопротивления участков трения поверхностных слоев.

Еще одна причина повреждения — захват. Он появляется на юбке поршня и вокруг колец. Частые причины этого явления — частицы от процессов трибологического износа или локального перегрева. Алюминиевый сплав поршня термически расширяется вдвое больше, чем чугун в цилиндре.

Основными параметрами двигателя внутреннего сгорания являются:

  • объем хода — это разность между верхним и нижним возвратным положением поршня в цилиндре;
  • объем камеры сгорания — это объем над головкой поршня, когда он находится в верхнем убираемом положении;
  • общий объем двигателя — это сумма объема цилиндра и объема камеры сгорания;
  • степень сжатия — это общий объем, деленный на объем камеры сгорания.

Поршень является одной из важнейших частей двигателя, в случае возникновения неисправностей необходимо сразу провести диагностику. Промедление может провести к дорогому ремонту или вообще полной замене двигателя.

Первичные двигатели

Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.

Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.

Паровые машины

В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.

В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне. Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).

Двигатель Стирлинга

В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.

Паровая турбина

Рисунки, изображающие крыльчатое колесо, вращающееся под воздействием потока пара, известны с древних времён. Однако практические конструкции паровой турбины были созданы лишь во второй половине XIX века, благодаря развитию конструкционных материалов, позволивших достичь высоких скоростей вращения.

В 1889 году шведский инженер Карл Густав де Лаваль предложил использовать расширяющееся сопло и быстроходную турбину (до 32000 об/мин), а, независимо от него, ещё в 1884 году англичанин Чарлз Алджернон Парсонс изобрёл первую пригодную для промышленного применения реактивную турбину (более тихоходную), способную вращать судовой винт. Паровые турбины стали применять на морских судах, а с начала XX века на электростанциях. В 1960-х годах их мощность превысила 1000 МВт в одном агрегате.

Принцип действия и особенности конструкции

Устройство электродвигателя стандартно, что позволяет существенно упростить эксплуатацию и ремонт техники. Статор и ротор, которые являются основными элементами техники, находятся внутри проточки цилиндрической формы. При подаче напряжения на неподвижную обмотку статора возбуждается магнитное поле, что и приводит в движение ротор и вал электродвигателя.

Постоянное движение ротора поддерживается за счёт перекоммутации обмоток или путем создания в статоре вращающегося магнитного поля. Если первый способ поддержки вращения вала характерен для коллекторных модификаций агрегатов, то образование вращающегося магнитного поля присуще для трехфазных асинхронных моторов.

Корпус электрического двигателя может быть изготовлен из алюминиевого сплава или чугуна. В каждом конкретном случае выбор материала корпуса осуществляется исходя из сферы использования техники и ее необходимых параметров по весу.

Поршневой ДВС с искровым зажиганием (двигатель Отто)

Является наиболее распространённым по количеству, поскольку число автомобилей в мире на 2014 год составляло более 1,2 млрд., и большая их часть приводится в движение двигателем Отто.

Бензиновый двигатель

Основная статья: Бензиновый двигатель внутреннего сгорания

Является наиболее распространённым вариантом, установлен на значительной части транспортных машин (ввиду меньшей массы, стоимости, хорошей экономичности и малошумности). Имеет два варианта системы подачи топлива: инжектор и карбюратор. В обоих случаях в цилиндре сжимается топливо-воздушная смесь, подверженная детонации, поэтому степень сжатия и уровень форсирования такого двигателя ограничены детонацией.

Карбюраторный двигатель

Основная статья: Карбюраторный двигатель

Особенностью является получение топливо-бензиновой смеси в специальном смесителе, карбюраторе. Ранее такие бензиновые двигатели преобладали; теперь, с развитием микропроцессоров, их область применения стремительно сокращается (применяются на маломощных ДВС, с низкими требованиями к расходу топлива).

Инжекторный двигатель

Особенностью является получение топливной смеси в коллекторе или открытых цилиндрах двигателя путём подачи инжекторной системой подачи топлива. В настоящий момент является преобладающим вариантом ДВС Отто, поскольку позволяет резко упростить электронное управление двигателем. Нужная степень однородности смеси достигается за счет увеличения давления форсуночного распыливания топлива.

Роторно-поршневой

Основная статья: Роторно-поршневой двигатель

Дополнительные сведения: Роторно-цилиндро-клапанный двигатель

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки, и потому — с выполнением экологических требований.

RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок

Обычно роторно-поршневые ДВС используют в качестве топлива бензин, но возможно и применение газа. Роторно-поршневой двигатель является ярким представителем бесшатунных ДВС, наряду с двигателем Баландина.

Газовые двигатели

Основная статья: Газовый двигатель

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются: уголь, торф, древесина.

Эти двигатели имеют широкое применение, например, в электростанциях малой и средней мощности, использующих в качестве топлива природный газ (в области высоких мощностей безраздельно господствуют газотурбинные энергоблоки).

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела.

Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего тела, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают  с частотой  сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и  подобном оборудовании,  рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на  мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания  магнитного поля, разрывается  связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при  любых нагрузках на валу.

Основные механизмы и системы двигателя

Поршневой двигатель внутреннего сгорания состоит из:

  • корпусных деталей
  • кривошипно-шатунного механизма
  • газораспределительного механизма
  • системы питания
  • системы охлаждения
  • смазочной системы
  • системы зажигания и пуска
  • регулятора частоты вращения

Устройство четырехтактного одноцилиндрового карбюраторного двигателя показано на рисунке:

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательное движение поршня во вращательное движение ко­ленчатого вала и наоборот.

Механизм газораспределения (ГРМ) предназначен для своевременного соединения надпоршневого объема с системой впуска свежего заряда и вы­пуска из цилиндра продуктов сгорания (отработавших газов) в определенные промежутки времени.

Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (в карбюраторном и газовом двигателях) или наполнения ци­линдра воздухом и подачи в него топлива под высоким давлением (в дизеле). Кроме того, эта система отводит наружу выхлопные газы.

Система охлаждения необходима для поддержания оптимального теп­лового режима двигателя. Вещество, отводящее от деталей двигателя избы­ток теплоты, — теплоноситель может быть жидкостью или воздухом.

Смазочная система предназначена для подвода смазочного материала (моторного масла) к поверхностям трения с целью их разделения, охлажде­ния, защиты от коррозии и вымывания продуктов изнашивания.

Система зажигания служит для своевременного зажигания рабочей смеси электрической искрой в цилиндрах карбюраторного и газового двига­телей.

Система пуска — это комплекс взаимодействующих механизмов и сис­тем, обеспечивающих устойчивое начало протекания рабочего цикла в ци­линдрах двигателя.

Регулятор частоты вращения — это автоматически действующий меха­низм, предназначенный для изменения подачи топлива или горючей смеси в зависимости от нагрузки двигателя.

У дизеля в отличие от карбюраторного и газового двигателей нет сис­темы зажигания и в системе питания вместо карбюратора или смесителя ус­тановлена топливная аппаратура (топливный насос высокого давления, топ­ливопроводы высокого давления и форсунки).

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Принципы эксплуатации

Автомобильные двигатели эксплуатируются с разным ресурсом. Самые простые двигатели могут иметь технический ресурс 150000 км пробега при правильном техническом обслуживании. А вот некоторые современные дизельные двигатели, которые оснащаются на грузовики, могут выхаживать до 2 миллионов.

Устраивая конструкцию мотора, автопроизводители обычно делают упорство на надежность и технические характеристики силовых агрегатов. Учитывая современную тенденцию, многие автомобильные моторы рассчитаны на небольшой, но надежные срок эксплуатации.

Так, средняя эксплуатация силового агрегата легкового транспортного средства составляет 250 000 км пробега. А дальше, существует несколько вариантов: утилизация, контрактный двигатель или капитальный ремонт.

Жидкое топливо

Двигатели на жидком топливе относятся к типу ракетных двигателей, то есть используются для запуска ракет. Состоит такое устройство из следующих частей:

Камера сгорания с соплом. Эти элементы служат для того, чтобы преобразовывать химическую энергию топлива в тепловую. После завершения этого процесса начинается следующий, суть которого, заключается в последующем превращении уже имеющейся тепловой энергии, в кинетическую

Тут важно отметить, что камера сгорания, как и сопло, и впрыскивающее устройство, считаются отдельным агрегатом.
Следующими элементами являются клапаны регулировки подачи топлива, а также непосредственно сам двигатель. Предназначение этих клапанов, как ясно из названия, — это регулировка подачи топлива

Это довольно важный процесс, так как характеристика двигателя типа этого зависит от объема подаваемого топлива. В зависимости от количества рабочего вещества, поступающего в двигатель, будет изменяться его тяга.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector