Вязкость жидкости
Содержание:
- Виды масел в зависимости от температурного режима
- Вязкость газов
- Таблица вязкость газов и паров
- Вязкость спирта
- Кинематическая вязкость — вода
- Система обозначения гидравлических масел
- Вязкость. Пояснения. Абсолютная и кинематическая вязкость. Таблицы значений вязкости — мало, школьный вариант. Вариант для печати.
- Примечания
- Вязкость газов
- Вязкость газа
- Вязкость глицерина
- Вязкость парафина
- Вязкость аморфных материалов
- Вязкость крови
- Сила вязкого трения
- Вязкость газов
- Вязкость сахарного сиропа
- Примечания
- Вязкость муки
Виды масел в зависимости от температурного режима
Вязкость определяется по международному стандарту SAE J300 и подразделяет все смазочные материалы на три основных вида — летние, зимние и всесезонные.
К летним относятся масла, имеющие следующий показатель SAE:
- 20;
- 30;
- 40;
- 50;
- 60.
Зимние смазки имеют свои преимущества:
- невысокая стоимость;
- невысокая вязкость, благодаря которой запуск холодного двигателя при минусовой температуре происходит лучше, чем с применением всесезонных жидкостей;
- высокая стойкость к деструкции.
- К ним относятся следующие виды:
- SAE 0W;
- SAE 5W;
- SAE 10W;
- SAE 15W;
- SAE 20W.
Самыми распространенными являются всесезонные жидкости. Они также имеет свои достоинства, а наиболее главным следует считать его использование в любое время года. Благодаря имеющимся в составе полимерным присадкам, оно способно изменять степень вязкости относительно окружающей температуры. Кроме того, оно имеет хорошие энергосберегающие свойства, благодаря которым силовой агрегат работает в жаркую погоду более экономичней, чем при использовании летнего типа масел.
Всесезонные:
- SAE 0W-30;
- SAE 0W-40;
- SAE 5W-30;
- SAE 5W-40;
- SAE 10W-30;
- SAE 10W-40;
- SAE 15W-40;
- SAE 20W-40.
Благодаря прекрасно сбалансированным показателям, всесезонки показывают хорошие результаты в работе с критическими температурами.
Для того, чтобы подобрать для двигателя своего автомобиля наиболее подходящее по вязкости масло — следует опираться на два основных показателя:
- в каких климатических условиях эксплуатируется автомобиль;
- сколько лет эксплуатируется двигатель.
Опираясь на первый показатель, для регионов с высокой температурой воздуха следует выбирать жидкости с более высоким показателем вязкости. Данный параметр представлен цифрой, находящейся перед буквой «W».
Так, к примеру, при эксплуатации транспортного средства при температуре воздуха от -10 и до +45 следует выбирать SAE 20W-40.
Второй параметр: в этом случае следует выбирать смазку согласно выработанному ресурсу двигателя. Так для нового двигателя следует подбирать меньшую вязкость, а для мотора постарше — более вязкое масло. Это необходимо для того, чтобы более выработанные детали, имеющие между собой значительно увеличенные зазоры, могли более или менее нормально функционировать.
К примеру, жидкость со значением 5W20 имеет температурный диапазон -35˚ С и -30˚ С.
Второе число, расположенное после буквы «W», дает понятие высокотемпературной вязкости. Если не вдаваться в технические тонкости, то можно сказать так — чем больше второе значение — тем выше будет вязкость масла при высоких температурах.
Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле
- η=13⟨u⟩⟨λ⟩ρ,{\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho ,}
где ⟨u⟩{\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨λ⟩{\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ{\displaystyle \rho } прямо пропорциональна давлению, а длина пробега ⟨λ⟩{\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).
С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u{\displaystyle u}, растущей с температурой как T{\displaystyle {\sqrt {T}}}.
Влияние температуры на вязкость газов
В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).
Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:
- μ=μT+CT+C(TT)32,{\displaystyle \mu =\mu _{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}
где
- μ — динамическая вязкость (в Па·с) при заданной температуре T;
- μ — контрольная вязкость (в Па·с) при некоторой контрольной температуре T;
- T — заданная температура в кельвинах;
- T — контрольная температура в кельвинах;
- C — постоянная Сазерленда для того газа, вязкость которого требуется определить.
Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.
Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:
Газ | C, K | T, K | μ, мкПа·с |
---|---|---|---|
Воздух | 120 | 291,15 | 18,27 |
Азот | 111 | 300,55 | 17,81 |
Кислород | 127 | 292,25 | 20,18 |
Углекислый газ | 240 | 293,15 | 14,8 |
Угарный газ | 118 | 288,15 | 17,2 |
Водород | 72 | 293,85 | 8,76 |
Аммиак | 370 | 293,15 | 9,82 |
Оксид серы(IV) | 416 | 293,65 | 12,54 |
Гелий | 79,4 | 273 | 19 |
Таблица вязкость газов и паров
Динамическая вязкость газов обычно выражается в микропуазах (мкпз). Согласно кинетической теории вязкость газов должна не зависеть от давления и изменяться пропорционально квадратному корню из абсолютной температуры. Первый вывод оказывается в общем правильным, исключением являются очень низкие и очень высокие давления; второй вывод требует некоторых поправок. Для изменения ƞ в зависимости от абсолютной температуры Т наиболее часто применяется формула:
Газ или пар | 00С | 200С | 500С | 1000С | 1500С | 2000С | 2500С | 3000С | Постоянная Сёзерлэнда, С |
---|---|---|---|---|---|---|---|---|---|
Азот |
166 |
174 |
188 |
208 |
229 |
246 |
263 |
280 |
104 |
Аргон |
212 |
222 |
242 |
271 |
296 |
321 |
344 |
367 |
142 |
Бензол |
70 |
75 |
81 |
94 |
108 |
120 |
— |
— |
— |
Водород |
84 |
88 |
93 |
103 |
113 |
121 |
130 |
139 |
72 |
Воздух |
171 |
181 |
195 |
218 |
239 |
258 |
277 |
295 |
117 |
Гелий |
186 |
194 |
208 |
229 |
250 |
270 |
290 |
307 |
— |
Закись азота |
137 |
146 |
160 |
183 |
204 |
225 |
246 |
265 |
260 |
Кислород |
192 |
200 |
218 |
244 |
268 |
290 |
310 |
330 |
125 |
Метан |
103 |
109 |
119 |
135 |
148 |
161 |
174 |
186 |
164 |
Неон |
298 |
310 |
329 |
365 |
396 |
425 |
453 |
— |
56 |
Пары воды |
— |
— |
— |
128 |
147 |
166 |
184 |
201 |
650 |
Сернистый газ |
117 |
126 |
140 |
163 |
186 |
207 |
227 |
246 |
306 |
Спирт этиловый |
— |
— |
— |
109 |
120 |
136 |
152 |
— |
— |
Углекислота |
138 |
146 |
163 |
186 |
207 |
229 |
249 |
267 |
240 |
Углерода окись |
166 |
177 |
189 |
210 |
229 |
246 |
264 |
279 |
102 |
Хлор |
123 |
132 |
145 |
169 |
189 |
210 |
230 |
250 |
350 |
Хлороформ |
94 |
102 |
112 |
129 |
146 |
160 |
— |
— |
— |
Этилен |
97 |
103 |
112 |
128 |
141 |
154 |
166 |
179 |
226 |
Таблица вязкость некоторых газов при высоких давлениях (мкпз)
Газ | Температура, 0С |
Давление в атмосферах |
||||
---|---|---|---|---|---|---|
50 |
100 |
300 |
600 |
900 |
||
Азот |
25 |
187 |
199 |
266 |
387 |
495 |
Азот |
50 |
197 |
208 |
267 |
370 |
470 |
Азот |
75 |
207 |
217 |
268 |
361 |
442 |
Углекислота |
40 |
181 |
483 |
— |
— |
— |
Этилен |
40 |
134 |
288 |
— |
— |
— |
Вязкость спирта
Спирты представляют собой органические соединения, углеводороды, которые обязательно содержат гидроксильную группу ОН (одну или несколько), связанную с углеводородным радикалом.
Спирты бывают жидкими, вязкими, твердыми — это обусловлено количеством в молекуле углеводородных радикалов. С ростом их количества снижается водорастворимость вещества.
Хотя некоторые спирты токсичны для человека (этиленгликоль, метилен), они необходимы для естественных процессов метаболизма в организме. Так, многие липиды, поставщики энергии, в своей основе имеют глицерин (представитель спиртов).
Вязкость многих спиртов соизмерима с соответствующим показателем у воды. Например, вязкость этилового спирта составляет 0,00119 Па•с.
Спирты перекачивают импеллерными, мембранными, шланговыми насосами.
Кинематическая вязкость — вода
Кинематическая вязкость воды, содержащей достаточное количество мелких ( менее 0 05 мм) взвешенных твердых частиц, может существенно увеличиться по сравнению с чистой ( без взвеси) водой. & связи с этим при изучении движения воды, несущей большое количество мелких наносов ( особенно Б придонной области потока в реке или канале), часто учитывают изменение кинематической вязкости в зависимости от положения движущегося слоя относительно дна.
Кинематическая вязкость воды при 20 2 С равна 1 ест. Вязкость определяется в приборах вискозиметрах посредством замера объема жидкости, протекающей через капиллярную трубу за определенный период времени. Чем быстрее вытекает жидкость из прибора, тем меньше у нее вязкость. Так, при 20 С вязкость дистиллированной воды равняется приблизительно 1 ест, а вязкость керосина — 4 ест. Это значит, что в вискозиметре керосин вытекает через капиллярную трубку в четыре раза медленнее воды.
Кинематическая вязкость воды при 20 С принята равной 1 0068 санти-стокса на основании исследований Э. П. Халфина как наиболее вероятное значение; отсюда один градус Энглера равен — 1 007 сантистокса.
Кинематическая вязкость воды при 20 С близка одному сантистоксу. Таким образом, условная вязкость показывает, во сколько раз данная жидкость при данной температуре более или менее вязка по сравнению с водой при 20 С.
Коэффициент кинематической вязкости воды при температуре 15 С равен v 0 0114 — 10 — м8 / сек.
Величина кинематической вязкости воды v определена при средней температуре ее 87 С.
С, кинематическая вязкость воды при 30 С составляет vso0 805 ест.
При повышении температуры кинематическая вязкость воды понижается, причем весьма существенно.
Одному сантистоксу равняется кинематическая вязкость воды при 20 С.
Здесь у — кинематическая вязкость воды, принимается по графику фиг.
Для предварительных тодсчетов величину кинематической вязкости воды v можно принять равной 0 01 см2 / с 1 Ю-6 м2 / с, что отвечает температуре 20 С.
В табл. 11 приведена зависимость кинематической вязкости воды от ее температуры.
В табл. 12 приведены сравнительные данные кинематической вязкости воды и воздуха в зависимости от температуры.
Выясним, каково будет число Рейнольдса, если кинематическая вязкость воды при 50 С v 0 556 Ю-6 м / сек.
В квадратичной области гидравлическая крупность не зависит от кинематической вязкости воды ( от температуры) при прочих равных условиях. При ламинарном режиме обтекания гидравлическая крупность не зависит от формы частиц наносов.
Система обозначения гидравлических масел
Принятая в мире классификация минеральных гидравлических масел основана на их вязкости и наличии присадок, обеспечивающих необходимый уровень эксплуатационных свойств. В соответствии с ГОСТ 17479.3–85 (“Масла гидравлические. Классификация и обозначение”) обозначение отечественных гидравлических масел состоит из групп знаков, первая из которых обозначается буквами “МГ” (минеральное гидравлическое), вторая — цифрами и характеризует класс кинематической вязкости, третья — буквами и указывает на принадлежность масла к группе по эксплуатационным свойствам.
Классы вязкости гидравлических масел |
|
Класс вязкости |
Кинематическая вязкость при 40 °С, мм2/с |
5 |
4,14-5,06 |
7 |
6,12-7,48 |
10 |
9,00-11,00 |
15 |
13,50-16,50 |
22 |
19,80-24,20 |
32 |
28,80-35,20 |
46 |
41,40-50,60 |
68 |
61,20-74,80 |
100 |
90,00-110,00 |
150 |
135,00— 165,00 |
По ГОСТ 17479.3-85 (аналогично международному стандарту ISO 3448) гидравлические масла по значению вязкости при 40 °С делятся на 10 классов (см. таблицу). В зависимости от эксплуатационных свойств и состава (наличия соответствующих функциональных присадок) гидравлические масла делят на группы А, Б и В. Группа А (группа НН по ISО) — нефтяные масла без присадок, применяемые в малонагруженных гидросистемах с шестеренными или поршневыми насосами, работающими при давлении до 15 МПа и максимальной температуре масла в объеме до 80 °С. Группа Б (группа HL по ISO) — масла с антиокислительными и антикоррозионными присадками. Предназначены для средненапряженных гидросистем с различными насосами, работающими при давлениях до 2,5 МПа и температуре масла в объеме свыше 80 °С. Группа В (группа HM по ISO) — хорошо очищенные масла с антиокислительными, антикоррозионными и противоизносными присадками. Предназначены для гидросистем, работающих при давлении свыше 25 МПа и температуре масла в объеме свыше 90 °С. В масла всех указанных групп могут быть введены загущающие (вязкостные) и антипенные присадки. Загущенные вязкостными полимерными присадками гидравлические масла соответствуют группе НV по ISO 6743/4. В таблице приведено обозначение гидравлических масел существующего ассортимента в соответстствии с классификацией по ГОСТ 17479.3-85. В таблице кроме чисто гидравлических масел включены масла марок «А», «Р», МГТ, отнесенные к категории трансмиссионных масел для гидромеханических передач. Однако благодаря высокому индексу вязкости, хорошим низкотемпературным и эксплуатационным свойствам и из-за отсутствия гидравлических масел такого уровня вязкости они также используются в гидрообъемных передачах и гидросистемах навесного оборудования наземной техники. Некоторые давно разработанные и выпускаемые гидравлические масла по значению вязкости нестрого соответствуют классу по классификации, обозначенной ГОСТ 17479.3-85, а занимают промежуточное положение. Например, масло ГТ-50, имеющее вязкость при 40 °С 17-18 мм2/с, находится в ряду классификации между 15 и 22 классами вязкости.
По вязкостным свойствам гидравлические масла условно делятся на следующие:
- маловязкие — классы вязкости с 5 по 15;
- средневязкие — классы вязкости 22 и 32;
- вязкие — классы вязкости с 46 по 150.
Обозначение товарных гидравлических масел |
|
Обозначение масла по ГОСТ 17479.3-85 |
Товарная марка |
МГ-5-Б |
МГЕ-4А, ЛЗ-МГ-2 |
МГ-7-Б |
МГ-7-Б, РМ |
МГ-10-Б |
МГ-10-Б, РМЦ |
МГ-15-Б |
АМГ-10 |
МГ-15-В |
МГЕ-10А, ВМГЗ |
МГ-22-А |
АУ |
МГ-22-Б |
АУП |
МГ-22-В |
«Р» |
МГ-32-А |
«ЭШ» |
МГ-32-В |
«А», МГТ |
МГ-46-В |
МГЕ-46В |
МГ-68-В |
МГ-8А-(М8-А) |
МГ-100-Б |
ГЖД-14с |
Вязкость. Пояснения. Абсолютная и кинематическая вязкость. Таблицы значений вязкости — мало, школьный вариант. Вариант для печати.
-
Кинематическая вязкость — мера потока имеющей сопротивление жидкости под влиянием силы тяжести. Когда две жидкости равного объема помещены в идентичные капиллярные вискозиметры и двигаются самотеком, вязкой жидкости требуется больше времени для протекания через капилляр. Если одной жидкости требуется для вытекания 200 секунд,а другой — 400 секунд, вторая жидкость в два раза более вязкая, чем первая по шкале кинематической вязкости.
- Размерность кинематической вязкости — L2/T, где L — длина, и T — время. Обычно используется сантистокс (cSt). ЕДИНИЦА СИ кинематической вязкости — mm2/s, = 1 cSt =1 сантиСтокс = 10-6м2/с = мм2/с
- Перевод единиц кинематической вязкости
-
Абсолютная (динамическая) вязкость, иногда называемая динамической или простой вязкостью, является произведением кинематической вязкости и плотности жидкости:
- Абсолютная вязкость = Кинематическая вязкость * Плотность
- Абсолютная вязкость выражается в сантипуазах (сПуаз). ЕДИНИЦА СИ абсолютной вязкости — Паскаль-секунда (Pa-s), запомним, что 1 сПуаз = 1 mPa-s.
- Перевод единиц динамической = абсолютной вязкости
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Примечания
- Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках: Сб. статей (рус.) / Под ред. Ф. Н. Тавадзе. — М.: Наука, 1978. — 235 с.
- В общем случае это не так.
- Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
- Попов Д. Н. Динамика и регулирование гидро- и превмосистем : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
- Френкель Я. И. Кинетическая теория жидкостей. — Ленинград, Наука, 1975. — с. 226.
- Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).
Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле
- η=13⟨u⟩⟨λ⟩ρ,{\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho ,}
где ⟨u⟩{\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨λ⟩{\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ{\displaystyle \rho } прямо пропорциональна давлению, а длина пробега ⟨λ⟩{\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).
С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u{\displaystyle u}, растущей с температурой как T{\displaystyle {\sqrt {T}}}.
Влияние температуры на вязкость газов
В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).
Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:
- μ=μT+CT+C(TT)32,{\displaystyle \mu =\mu _{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}
где
- μ — динамическая вязкость (в Па·с) при заданной температуре T;
- μ — контрольная вязкость (в Па·с) при некоторой контрольной температуре T;
- T — заданная температура в кельвинах;
- T — контрольная температура в кельвинах;
- C — постоянная Сазерленда для того газа, вязкость которого требуется определить.
Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.
Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:
Газ | C, K | T, K | μ, мкПа·с |
---|---|---|---|
Воздух | 120 | 291,15 | 18,27 |
Азот | 111 | 300,55 | 17,81 |
Кислород | 127 | 292,25 | 20,18 |
Углекислый газ | 240 | 293,15 | 14,8 |
Угарный газ | 118 | 288,15 | 17,2 |
Водород | 72 | 293,85 | 8,76 |
Аммиак | 370 | 293,15 | 9,82 |
Оксид серы(IV) | 416 | 293,65 | 12,54 |
Гелий | 79,4 | 273 | 19 |
Вязкость газа
Газ — это такое агрегатное состояние вещества, при котором связи между его частицами очень слабые, а сами они подвижны, почти свободно, хаотически перемещаются в промежутках между столкновениями, при которых резко меняют характер своего движения.
За счет вязкости газа выравниваются скорости движения различных его слоев. Именно поэтому, например, ветер со временем затихает.
Примечательно, что при повышении температуры вязкость газов в отличие от жидкостей возрастает. Связано это с тем, что интенсивность беспорядочного теплового движения молекул при нагревании увеличивается, они перемещаются быстрее.
Динамическая вязкость основных газов имеет следующие показатели при 0 °С:
- воздух — 1,73•10-5 Па•с;
- аммиак — 0,92•10-5 Па•с;
- водород — 0,84•10-5 Па•с;
- углекислый газ — 1,36•10-5 Па•с;
- неон — 2,98•10-5 Па•с (самый вязкий газ);
- гелий — 1,8•10-5 Па•с;
- азот — 1,66•10-5 Па•с;
- кислород — 1,95•10-5 Па•с;
- ксенон — 2,12•10-5 Па•с;
- хлор — 1,23•10-5 Па•с;
- метан — 1,03•10-5 Па•с;
- пропан — 0,75•10-5 Па•с.
Вязкость глицерина
Глицерин представляет собой органическое соединение, относящееся к группе спиртов (трехатомный спирт). Это бесцветная сиропообразная жидкость, сладковатая на вкус, с широким спектром использования: востребована не только в лекарственных и косметических целях, но и в пищевой, лакокрасочной, бумажной, текстильной промышленности, электротехнике, сельском хозяйстве и пр. Добывают глицерин из растительных жиров или посредством химического синтеза.
Вязкость глицерина довольно высока — составляет 1,48 Па•с при температуре 20 °С, а это почти в 1500 раз выше вязкости воды.
Для перекачивания глицерина больше всего подходят шестеренчатые, импеллерные и мембранные насосы.
Вязкость парафина
Парафин является смесью углеводородов преимущественно метанового ряда. Парафины бывают жидкими (температуре их плавления составляет менее 27 °C), твердыми (28–70 °C), микрокристаллическими (или церезины, плавятся при температуре свыше 60–80 °C). Размер и форма кристаллов обусловлена особенностями их получения. Так, нефтяное сырье и медленное охлаждение обеспечивают мелкие тонкие кристаллы, а крупные получаются из селективно очищенных дистиллятных рафинатов.
Расплавленные парафины обладают небольшой вязкостью. Но при одинаковой температуре наиболее вязкими являются церезины.
Применяются парафины для изготовления парафинистой бумаги, пропитывания древесины в карандашном и спичечном производстве, для аппретирования тканей, в медицине для парафинотерапии и пр.
Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:
- η(T)=Aexp(QRT),{\displaystyle \eta (T)=A\exp \left({\frac {Q}{RT}}\right),}
где
- Q{\displaystyle Q} — энергия активации вязкости (Дж/моль);
- T{\displaystyle T} — температура (К);
- R{\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
- A{\displaystyle A} — некоторая постоянная.
Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q{\displaystyle Q} изменяется от большой величины QH{\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину QL{\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда (QH−QL)<QL{\displaystyle (Q_{H}-Q_{L})<Q_{L}}, или ломкие, когда (QH−QL)⩾QL{\displaystyle (Q_{H}-Q_{L})\geqslant Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса RD=QHQL{\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют RD<2{\displaystyle R_{D}<2}, в то время как ломкие материалы имеют RD⩾2{\displaystyle R_{D}\geqslant 2}.
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением
- η(T)=A1T(1+A2expBRT)(1+CexpDRT){\displaystyle \eta (T)=A_{1}T\left(1+A_{2}\exp {\frac {B}{RT}}\right)\left(1+C\exp {\frac {D}{RT}}\right)}
с постоянными A1{\displaystyle A_{1}}, A2{\displaystyle A_{2}}, B{\displaystyle B}, C{\displaystyle C} и D{\displaystyle D}, связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования Tg{\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Пример вязкости стёкол
Если температура существенно ниже температуры стеклования, T<Tg{\displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
- η(T)=ALTexp(QHRT){\displaystyle \eta (T)=A_{L}T\exp \left({\frac {Q_{H}}{RT}}\right)}
с высокой энергией активации QH=Hd+Hm{\displaystyle Q_{H}=H_{d}+H_{m}}, где Hd{\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm{\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T<Tg{\displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При T≫Tg{\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса
- η(T)=AHTexp(QLRT),{\displaystyle \eta (T)=A_{H}T\exp \left({\frac {Q_{L}}{RT}}\right),}
но с низкой энергией активации QL=Hm{\displaystyle Q_{L}=H_{m}}. Это связано с тем, что при T≫Tg{\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.
Вязкость крови
Кровь представляет собой жидкую среду организма (вязкопластическую жидкость), состоящую из плазмы и находящихся в ней клеток (эритроцитов, тромбоцитов, лейкоцитов, белков). Она определяет качество всех процессов, происходящих в тканях и отдельных органах.
Вязкость крови показывает соотношение количества ее кровяных клеток к объему плазмы. Этот показатель крайне важен для полноценной работы организма и прежде всего сердечно-сосудистой системы. Нормальным значением в среднем считается 4–5 мПа•с, отклонения же в ту или иную сторону способны вызвать серьезные патологии. На вязкость крови влияют многие факторы: температура тела, состав (венозная более вязкая, чем артериальная), пол (у мужчин — 4,3–5,3 мПа•с, у женщин — 3,9–4,5 мПа•с), возраст (у новорожденных вязкость выше), внешние воздействия, применение медицинских препаратов.
Для перекачивания крови животных на производстве используется насосные установки разных типов: центробежные, мембранные, шестеренчатые, винтовые, перистальтические.
Сила вязкого трения
Сила вязкого трения F, действующая на жидкость, пропорциональна (в простейшем случае сдвигового течения вдоль плоской стенки) скорости относительного движения v тел и площади S и обратно пропорциональна расстоянию между плоскостями h:
F→∝−v→⋅Sh{\displaystyle {\vec {F}}\propto -{\frac {{\vec {v}}\cdot S}{h}}}
Коэффициент пропорциональности, зависящий от природы жидкости или газа, называют коэффициентом динамической вязкости. Этот закон был предложен Исааком Ньютоном в 1687 году и носит его имя (закон вязкости Ньютона). Экспериментальное подтверждение закона было получено в начале XIX века в опытах Кулона с крутильными весами и в экспериментах Хагена и Пуазёйля с течением воды в капиллярах.
Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.
Вязкость газов
В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле
η=13⟨u⟩⟨λ⟩ρ{\displaystyle \eta ={\frac {1}{3}}\langle u\rangle \langle \lambda \rangle \rho },
где ⟨u⟩{\displaystyle \langle u\rangle } — средняя скорость теплового движения молекул, ⟨λ⟩{\displaystyle \langle \lambda \rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ{\displaystyle \rho } прямо пропорциональна давлению, а ⟨λ⟩{\displaystyle \langle \lambda \rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).
С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u{\displaystyle u}, растущей с температурой как T{\displaystyle {\sqrt {T}}}
Влияние температуры на вязкость газов
В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).
Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:
μ=μT+CT+C(TT)32,{\displaystyle {\mu }={\mu }_{0}{\frac {T_{0}+C}{T+C}}\left({\frac {T}{T_{0}}}\right)^{3/2},}
где:
- μ — динамическая вязкость в (Па·с) при заданной температуре T;
- μ — контрольная вязкость в (Па·с) при некоторой контрольной температуре T;
- T — заданная температура в Кельвинах;
- T — контрольная температура в Кельвинах;
- C — постоянная Сазерленда для того газа, вязкость которого требуется определить.
Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.
Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:
Газ | C, K | T, K | μ, мкПа·с |
---|---|---|---|
Воздух | 120 | 291,15 | 18,27 |
Азот | 111 | 300,55 | 17,81 |
Кислород | 127 | 292,25 | 20,18 |
Углекислый газ | 240 | 293,15 | 14,8 |
Угарный газ | 118 | 288,15 | 17,2 |
Водород | 72 | 293,85 | 8,76 |
Аммиак | 370 | 293,15 | 9,82 |
Оксид серы(IV) | 416 | 293,65 | 12,54 |
Гелий | 79,4 | 273 | 19 |
Вязкость сахарного сиропа
Сахаром в быту называется сахароза. Свекловичный и тростниковый сахар (в виде песка и рафинада) — очень важный продукт питания. Сахароза относится к углеводам, питательным веществам, заряжающим организм энергией.
Сахарный сироп (основа многих мучных и кондитерских изделий) обладает определенной вязкостью. Она есть уже у самой воды, в составе данной среды. С повышением концентрации растворов вязкость сиропов увеличивается. При концентрации сахара свыше 80 % начинается процесс кристаллизации сахара.
Выделяют следующие разновидности сиропов.
1. Сахарно-паточный. Помимо растворенного в воде сахара содержит патоку. Имеет более высокую вязкость.
2. Инвертный. Обладает более низкой вязкостью, но повышенной гигроскопичностью.
3. Молочный. Растворителем здесь служит молоко (цельное, сухое, сгущенное, сливки), возможно добавление патоки. Данный сироп выступает основным полуфабрикатом при изготовлении молочных конфет, помадных масс.
Для перекачивания сиропов лучше всего подходят центробежные и кулачковые насосы.
Примечания
- Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках: Сб. статей (рус.) / Под ред. Ф. Н. Тавадзе. — М.: Наука, 1978. — 235 с.
- В общем случае это не так.
- Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
- Попов Д. Н. Динамика и регулирование гидро- и превмосистем : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
- Френкель Я. И. Кинетическая теория жидкостей. — Ленинград, Наука, 1975. — с. 226.
- Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2012).
Вязкость муки
Мука — продукт, который получают посредством измельчения зерен с/х культур (в основном злаковых) до порошкообразной консистенции. На муку размалывают преимущественно пшеницу, рожь, в меньших объемах кукурузу, ячмень и прочие зерновые культуры.
Сила муки — показатель, определяющий ее хлебопекарные качества. Он обозначает, как поведет себя тесто при замесе, каким будет его вязкость, эластичность, упругость, водопоглотительная способность. В зависимости от реологических свойств теста классифицируют муку сильную, среднюю, слабую по силе.
Вязкость водно-мучной смеси обусловлена содержанием в муке клейковины, которая разбухает в растворенном виде.